Accès libre

Stringent in-silico identification of putative G-protein-coupled receptors (GPCRs) of the entomopathogenic nematode Heterorhabditis bacteriophora

À propos de cet article

Citez

Alhosaini, K., Azhar, A., Alonazi, A., and Al-Zoghaibi, F. 2021. GPCRs: The most promiscuous druggable receptor of mankind. Saudi Pharmaceutical Journal 29:539–551. AlhosainiK. AzharA. AlonaziA. Al-ZoghaibiF. 2021 GPCRs: The most promiscuous druggable receptor of mankind Saudi Pharmaceutical Journal 29 539 551 Search in Google Scholar

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215:403–410. AltschulS. F. GishW. MillerW. MyersE. W. LipmanD. J. 1990 Basic local alignment search tool Journal of Molecular Biology 215 403 410 Search in Google Scholar

Attwood, T. K., and Findlay, J. B. 1994. Fingerprinting G-protein-coupled receptors. Protein Engineering Design & Selection 7:195–203. AttwoodT. K. FindlayJ. B. 1994 Fingerprinting G-protein-coupled receptors Protein Engineering Design & Selection 7 195 203 Search in Google Scholar

Audebrand, A., Désaubry, L., and Nebigil, C. G. 2020. Targeting GPCRs against cardiotoxicity induced by anticancer treatments. Frontiers in Cardiovascular Medicine, 6:194. AudebrandA. DésaubryL. NebigilC. G. 2020 Targeting GPCRs against cardiotoxicity induced by anticancer treatments Frontiers in Cardiovascular Medicine 6 194 Search in Google Scholar

Bai, X., Adams, B. J., Ciche, T. A., Clifton, S., Gaugler, R., Kim, K., Spieth, J., Sternberg, P. W., Wilson, R. K., and Grewal, P. S. 2013. A lover and a fighter: The genome sequence of an entomopathogenic nematode Heterorhabditis Bacteriophora. PLoS One 8:e69618. BaiX. AdamsB. J. CicheT. A. CliftonS. GauglerR. KimK. SpiethJ. SternbergP. W. WilsonR. K. GrewalP. S. 2013 A lover and a fighter: The genome sequence of an entomopathogenic nematode Heterorhabditis Bacteriophora PLoS One 8 e69618 Search in Google Scholar

Baiocchi, T., Lee, G., Choe, D. H., and Dillman, A. R. 2017. Host-seeking parasitic nematodes use specific odors to assess host resources. Scientific Reports, 7:6270. BaiocchiT. LeeG. ChoeD. H. DillmanA. R. 2017 Host-seeking parasitic nematodes use specific odors to assess host resources Scientific Reports 7 6270 Search in Google Scholar

Bardgett, R. D., and van der Putten, W. H. 2014. Belowground biodiversity and ecosystem functioning. Nature 515:505–511. BardgettR. D. van der PuttenW. H. 2014 Belowground biodiversity and ecosystem functioning Nature 515 505 511 Search in Google Scholar

Bargmann, C. I. 2006. Comparative chemosensation from receptors to ecology. Nature 444:295–301. BargmannC. I. 2006 Comparative chemosensation from receptors to ecology Nature 444 295 301 Search in Google Scholar

Bargmann, C. I. 1998. Neurobiology of the Caenorhabditis elegans genome. Science 282:2028–2033. BargmannC. I. 1998 Neurobiology of the Caenorhabditis elegans genome Science 282 2028 2033 Search in Google Scholar

Bargmann, C. I., Hartwieg, E., and Horvitz, H. R. 1993. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74:515–527. BargmannC. I. HartwiegE. HorvitzH. R. 1993 Odorant-selective genes and neurons mediate olfaction in C. elegans Cell 74 515 527 Search in Google Scholar

Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Howe, K. L., and Sonnhammer, E. L. 2000. The Pfam protein families database. Nucleic Acids Research 28:263–266. BatemanA. BirneyE. DurbinR. EddyS. R. HoweK. L. SonnhammerE. L. 2000 The Pfam protein families database Nucleic Acids Research 28 263 266 Search in Google Scholar

Begum, K., Mohl, J. E., Ayivor, F., Perez, E. E., and Leung, M. Y. 2020. GPCR-PenDB: A database of protein sequences and derived features to facilitate prediction and classification of G-Protein-coupled receptors. Database (Oxford) 2020:baaa087. BegumK. MohlJ. E. AyivorF. PerezE. E. LeungM. Y. 2020 GPCR-PenDB: A database of protein sequences and derived features to facilitate prediction and classification of G-Protein-coupled receptors Database (Oxford) 2020 baaa087 Search in Google Scholar

Bernot, J. P., Rudy, G., Erickson, P. T., Ratnappan, R., Haile, M., Rosa, B. A., Mitreva, M., O’Halloran, D. M., and Hawdon, J. M. 2020. Transcriptomic analysis of hookworm Ancylostoma ceylanicum life cycle stages reveals changes in G-protein coupled receptor diversity associated with the onset of parasitism. International Journal for Parasitology 50:603–610. BernotJ. P. RudyG. EricksonP. T. RatnappanR. HaileM. RosaB. A. MitrevaM. O’HalloranD. M. HawdonJ. M. 2020 Transcriptomic analysis of hookworm Ancylostoma ceylanicum life cycle stages reveals changes in G-protein coupled receptor diversity associated with the onset of parasitism International Journal for Parasitology 50 603 610 Search in Google Scholar

Bhasin, M., and Raghava, 2004. G.P.S. GPCRPred: An SVM-based method for prediction of families and subfamilies of G-protein coupled receptors. Nucleic Acids Research 32:W383–389. BhasinM. RaghavaG.P.S. 2004 GPCRPred: An SVM-based method for prediction of families and subfamilies of G-protein coupled receptors Nucleic Acids Research 32 W383 389 Search in Google Scholar

Blumenthal, T., and Davis, R. E. 2004. Exploring nematode diversity. Nature Genetics 36:1246–1247. BlumenthalT. DavisR. E. 2004 Exploring nematode diversity Nature Genetics 36 1246 1247 Search in Google Scholar

Bockaert, J., and Pin, J. P. 1999. Molecular tinkering of G-protein-coupled receptors: an evolutionary success. EMBO Journal 18:1723–1729. BockaertJ. PinJ. P. 1999 Molecular tinkering of G-protein-coupled receptors: an evolutionary success EMBO Journal 18 1723 1729 Search in Google Scholar

Bresso, E., Fernandez, D., Amora, D., Noel, P., Petitot, A. S., Sá, M., Freire, E. V., Danchin, E., Maigret, B., and Martins, N. 2019. A chemosensory GPCR as a potential target to control the root-knot nematode Meloidogyne incognita parasitism in plants. Molecules 24:3798. BressoE. FernandezD. AmoraD. NoelP. PetitotA. S. M. FreireE. V. DanchinE. MaigretB. MartinsN. 2019 A chemosensory GPCR as a potential target to control the root-knot nematode Meloidogyne incognita parasitism in plants Molecules 24 3798 Search in Google Scholar

Brody, T., and Cravchik, A. 2000. Drosophila melanogaster G-protein–coupled receptors. Journal of Cell Biology 150:83–88. BrodyT. CravchikA. 2000 Drosophila melanogaster G-protein–coupled receptors Journal of Cell Biology 150 83 88 Search in Google Scholar

C. elegans Sequencing Consortium (1998). Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018. C. elegans Sequencing Consortium 1998 Genome sequence of the nematode C. elegans: a platform for investigating biology Science 282 2012 2018 Search in Google Scholar

Curtis, R. H. C. 2008. Plant-nematode interactions: environmental signals detected by the nematode's chemosensory organs control changes in the surface cuticle and behaviour. Parasite 15:310–316. CurtisR. H. C. 2008 Plant-nematode interactions: environmental signals detected by the nematode's chemosensory organs control changes in the surface cuticle and behaviour Parasite 15 310 316 Search in Google Scholar

Cuthbertson, J. M., Doyle, D. A., and Sansom, M. S. P. 2005. Transmembrane helix prediction: A comparative evaluation and analysis. Protein Engineering Design and Selection 18:295–308. CuthbertsonJ. M. DoyleD. A. SansomM. S. P. 2005 Transmembrane helix prediction: A comparative evaluation and analysis Protein Engineering Design and Selection 18 295 308 Search in Google Scholar

Dillman, A. R., Guillermin, M. L., Lee, J. H., Kim, B., Sternberg, P. W., and Hallem, E. A. 2012. Olfaction shapes host-parasite interactions in parasitic nematodes. Proceedings of the National Academy of Sciences 109:E2324–E2333. DillmanA. R. GuillerminM. L. LeeJ. H. KimB. SternbergP. W. HallemE. A. 2012 Olfaction shapes host-parasite interactions in parasitic nematodes Proceedings of the National Academy of Sciences 109 E2324 E2333 Search in Google Scholar

Dryer, L., and Berghard, A. 1999. Odorant receptors: A plethora of G-protein-coupled receptors. Trends in Pharmacological Sciences 20:413–417. DryerL. BerghardA. 1999 Odorant receptors: A plethora of G-protein-coupled receptors Trends in Pharmacological Sciences 20 413 417 Search in Google Scholar

Eddy, S. R. 1998. Profile hidden Markov models. Bioinformatics 14:755–763. EddyS. R. 1998 Profile hidden Markov models Bioinformatics 14 755 763 Search in Google Scholar

Elrod, D. W., and Chou, K. C. A. 2002. Study on the correlation of G-protein-coupled receptor types with amino acid composition. Protein Engineering Design and Selection 15:713–715. ElrodD. W. ChouK. C. A. 2002 Study on the correlation of G-protein-coupled receptor types with amino acid composition Protein Engineering Design and Selection 15 713 715 Search in Google Scholar

Fredriksson, R., Lagerström, M. C., Lundin, L. G., and Schiöth, H. B. 2003. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology 63:1256–1272. FredrikssonR. LagerströmM. C. LundinL. G. SchiöthH. B. 2003 The G-protein-coupled receptors in the human genome form five main families Phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology 63 1256 1272 Search in Google Scholar

Gaillard, I., Rouquier, S., and Giorgi, D. 2004. Olfactory receptors. Cellular and Molecular Life Sciences 61:456–469. GaillardI. RouquierS. GiorgiD. 2004 Olfactory receptors Cellular and Molecular Life Sciences 61 456 469 Search in Google Scholar

Gang, S. S., Castelletto, M. L., Yang, E., Ruiz, F., Brown, T. M., Bryant, A. S., Grant, W. N., and Hallem, E. A. 2020. Chemosensory mechanisms of host seeking and infectivity in skin-penetrating nematodes. Proceedings of the National Academy of Sciences 117:17913–17923. GangS. S. CastellettoM. L. YangE. RuizF. BrownT. M. BryantA. S. GrantW. N. HallemE. A. 2020 Chemosensory mechanisms of host seeking and infectivity in skin-penetrating nematodes Proceedings of the National Academy of Sciences 117 17913 17923 Search in Google Scholar

Gether, U. 2000. Uncovering molecular mechanisms involved in activation of G-protein-coupled receptors. Endocrine Reviews 21:90–113. GetherU. 2000 Uncovering molecular mechanisms involved in activation of G-protein-coupled receptors Endocrine Reviews 21 90 113 Search in Google Scholar

Ghosh, E., Kumari, P., Jaiman, D., and Shukla, A. K. 2015. Methodological advances: the unsung heroes of the GPCR structural revolution. Nature Reviews Molecular Cell Biology 16:69–81. GhoshE. KumariP. JaimanD. ShuklaA. K. 2015 Methodological advances: the unsung heroes of the GPCR structural revolution Nature Reviews Molecular Cell Biology 16 69 81 Search in Google Scholar

Hallem, E., Rengarajan, M., Ciche, T. A., and Sternberg, P. 2007. Nematodes, bacteria, and flies: a tripartite model for nematode parasitism. Current Biology 17:898–904. HallemE. RengarajanM. CicheT. A. SternbergP. 2007 Nematodes, bacteria, and flies: a tripartite model for nematode parasitism Current Biology 17 898 904 Search in Google Scholar

Hallem, E. A., Dillman, A. R., Hong, A. V., Zhang, Y., Yano, J. M., demarco, S. F., and Sternberg, P. W. 2011. A sensory code for host-seeking in parasitic nematodes. Current Biology 21:377–383. HallemE. A. DillmanA. R. HongA. V. ZhangY. YanoJ. M. demarcoS. F. SternbergP. W. 2011 A sensory code for host-seeking in parasitic nematodes Current Biology 21 377 383 Search in Google Scholar

Hanlon, C. D., and Andrew, D. J. 2015. Outside-in signaling – a brief review of GPCR signaling with a focus on the drosophila GPCR family. Journal of Cell Science 128:3533–3542. HanlonC. D. AndrewD. J. 2015 Outside-in signaling – a brief review of GPCR signaling with a focus on the drosophila GPCR family Journal of Cell Science 128 3533 3542 Search in Google Scholar

Hermans, E. 2003. Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacology & Therapeutics 99:25–44. HermansE. 2003 Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors Pharmacology & Therapeutics 99 25 44 Search in Google Scholar

Hilger, D., Masureel, M., and Kobilka, B. K. 2018. Structure and dynamics of GPCR signaling complexes. Nature Structural & Molecular Biology 25:4–12. HilgerD. MasureelM. KobilkaB. K. 2018 Structure and dynamics of GPCR signaling complexes Nature Structural & Molecular Biology 25 4 12 Search in Google Scholar

Hobert, O. 2010. Neurogenesis in the nematode Caenorhabditis elegans. (October 4, 2010). The C. elegans Research Community, 28 ed. WormBook. doi/10.1895/wormbook.1.12.2, http://www.wormbook.org. HobertO. 2010 Neurogenesis in the nematode Caenorhabditis elegans. (October 4, 2010) The C. elegans Research Community 28 ed. WormBook 10.1895/wormbook.1.12.2 http://www.wormbook.org Open DOISearch in Google Scholar

Insel, P. A., Sriram, K., Gorr, M. W., Wiley, S. Z., Michkov, A., Salmerón, C., and Chinn, A. M. 2019. GPCRomics: an approach to discover GPCR drug targets. Trends in Pharmacological Sciences 40:378–387. InselP. A. SriramK. GorrM. W. WileyS. Z. MichkovA. SalmerónC. ChinnA. M. 2019 GPCRomics: an approach to discover GPCR drug targets Trends in Pharmacological Sciences 40 378 387 Search in Google Scholar

Käll, L., Krogh, A., and Sonnhammer, E. L. L. 2004. A combined transmembrane topology and signal peptide prediction method. Journal of Molecular Biology 338:1027–1036. KällL. KroghA. SonnhammerE. L. L. 2004 A combined transmembrane topology and signal peptide prediction method Journal of Molecular Biology 338 1027 1036 Search in Google Scholar

Käll, L., Krogh, A., and Sonnhammer, E. L. L. 2007. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Research 35:W429–432. KällL. KroghA. SonnhammerE. L. L. 2007 Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server Nucleic Acids Research 35 W429 432 Search in Google Scholar

Kolakowski, L. F. 1994. GPCRdb: A G-protein-coupled receptor database. Journal of Receptor, Ligand and Channel Research 2:1–7. KolakowskiL. F. 1994 GPCRdb: A G-protein-coupled receptor database Journal of Receptor, Ligand and Channel Research 2 1 7 Search in Google Scholar

Koppenhöfer, A. M., and Fuzy, E. M. 2006. Effect of soil type on infectivity and persistence of the entomopathogenic nematodes Steinernema scarabaei, Steinernema glaseri, Heterorhabditis zealandica, and Heterorhabditis bacteriophora. Journal of Invertebrate Pathology 92:11–22. KoppenhöferA. M. FuzyE. M. 2006 Effect of soil type on infectivity and persistence of the entomopathogenic nematodes Steinernema scarabaei, Steinernema glaseri, Heterorhabditis zealandica, and Heterorhabditis bacteriophora Journal of Invertebrate Pathology 92 11 22 Search in Google Scholar

Krieger, J., and Breer, H. 1999. Olfactory reception in invertebrates. Science 286:720–723. KriegerJ. BreerH. 1999 Olfactory reception in invertebrates Science 286 720 723 Search in Google Scholar

Krishnan, A., Almén, M. S., Fredriksson, R., and Schiöth, H. B. 2014. Insights into the origin of nematode chemosensory GPCRs: Putative orthologs of the Srw family are found across several phyla of protostomes. PLoS ONE 9:e93048. KrishnanA. AlménM. S. FredrikssonR. SchiöthH. B. 2014 Insights into the origin of nematode chemosensory GPCRs: Putative orthologs of the Srw family are found across several phyla of protostomes PLoS ONE 9 e93048 Search in Google Scholar

Kroeze, W. K., Sheffler, D. J., and Roth, B. L. 2003. G-protein-coupled receptors at a glance. Journal of Cell Science 11:4867–4869. KroezeW. K. ShefflerD. J. RothB. L. 2003 G-protein-coupled receptors at a glance Journal of Cell Science 11 4867 4869 Search in Google Scholar

Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. L. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology 305:567–580. KroghA. LarssonB. von HeijneG. SonnhammerE. L. L. 2001 Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes Journal of Molecular Biology 305 567 580 Search in Google Scholar

Lambshead, P. J. D. 2004. Marine nematode biodiversity. Pp. 438–468 in Z. X. Chen, S. Y. Chen, and D. W. Dickson, eds. Nematology: Advances and perspectives. Nematode morphology, physiology, and ecology, vol. 1. CABI. LambsheadP. J. D. 2004 Marine nematode biodiversity 438 468 in ChenZ. X. ChenS. Y. DicksonD. W. eds. Nematology: Advances and perspectives. Nematode morphology, physiology, and ecology 1 CABI Search in Google Scholar

Mcgaughran, A., Morgan, K., and Sommer, R. J. 2013. Natural variation in chemosensation: Lessons from an island nematode. Ecology and Evolution 3: 5209–5224. McgaughranA. MorganK. SommerR. J. 2013 Natural variation in chemosensation: Lessons from an island nematode Ecology and Evolution 3 5209 5224 Search in Google Scholar

Mclean, F., Berger, D., Laetsch, D. R., Schwartz, H. T., and Blaxter, M. 2018. Improving the annotation of the Heterorhabditis bacteriophora genome. Gigascience 7:giy034. McleanF. BergerD. LaetschD. R. SchwartzH. T. BlaxterM. 2018 Improving the annotation of the Heterorhabditis bacteriophora genome Gigascience 7 giy034 Search in Google Scholar

Meruelo, A. D., Han, S. K., Kim, S., and Bowie, J. U. 2012. Structural differences between thermophilic and mesophilic membrane proteins. Protein Science 21:1746–1753. MerueloA. D. HanS. K. KimS. BowieJ. U. 2012 Structural differences between thermophilic and mesophilic membrane proteins Protein Science 21 1746 1753 Search in Google Scholar

Mombaerts, P. 1999. Seven-transmembrane proteins as odorant and chemosensory receptors. Science 286:707–711. MombaertsP. 1999 Seven-transmembrane proteins as odorant and chemosensory receptors Science 286 707 711 Search in Google Scholar

Nei, M., Niimura, Y., and Nozawa, M. 2008. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nature Reviews Genetics 9:951–963. NeiM. NiimuraY. NozawaM. 2008 The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity Nature Reviews Genetics 9 951 963 Search in Google Scholar

Nordström, K. J. V., Sällman Almén, M., Edstam, M. M., Fredriksson, R., and Schiöth, H. B. 2011. Independent research, Needleman–Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G-protein-coupled receptor families. Molecular Biology and Evolution 28:2471–2480. NordströmK. J. V. Sällman AlménM. EdstamM. M. FredrikssonR. SchiöthH. B. 2011 Independent research, Needleman–Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G-protein-coupled receptor families Molecular Biology and Evolution 28 2471 2480 Search in Google Scholar

O’Halloran, D. M., and Burnell, A. M. 2003. An investigation of chemotaxis in the insect parasitic nematode Heterorhabditis bacteriophora. Parasitology 127:375–385. O’HalloranD. M. BurnellA. M. 2003 An investigation of chemotaxis in the insect parasitic nematode Heterorhabditis bacteriophora Parasitology 127 375 385 Search in Google Scholar

Odoemelam, C. S., Percival, B., Wallis, H., Chang, M. W., Ahmad, Z., Scholey, D., Burton, E., Williams, I. H., Kamerlin, C. L., and Wilson, P. B. 2020. G-protein-coupled receptors: structure and function in drug discovery. RSC Advances 10:36337–36348. OdoemelamC. S. PercivalB. WallisH. ChangM. W. AhmadZ. ScholeyD. BurtonE. WilliamsI. H. KamerlinC. L. WilsonP. B. 2020 G-protein-coupled receptors: structure and function in drug discovery RSC Advances 10 36337 36348 Search in Google Scholar

Perry, R. N. 1996. Chemoreception in plant parasitic nematodes. Annual Review of Phytopathology 34: 181–199. PerryR. N. 1996 Chemoreception in plant parasitic nematodes Annual Review of Phytopathology 34 181 199 Search in Google Scholar

Poinar, G. O. 1975. Description and biology of a new insect parasitic rhabditoid, Heterorhabditis bacteriophora n.Gen., n.Sp. (Rhabditida, Heterorhabditidae n.Fam.). Nematologica 21:463–470. PoinarG. O. 1975 Description and biology of a new insect parasitic rhabditoid, Heterorhabditis bacteriophora n.Gen., n.Sp. (Rhabditida, Heterorhabditidae n.Fam.) Nematologica 21 463 470 Search in Google Scholar

Prasad, B. C., and Reed, R. R. 1999. Chemosensation: Molecular mechanisms in worms and mammals. Trends in Genetics 15:150–153. PrasadB. C. ReedR. R. 1999 Chemosensation: Molecular mechanisms in worms and mammals Trends in Genetics 15 150 153 Search in Google Scholar

Punta, M., Coggill, P. C., Eberhardt, R. Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., Forslund, K., Ceric, G., Clements, J., Heger, A., Holm, L., Sonnhammer, E. L., Eddy, S. R., Bateman, A., and Finn, R. D. 2012. The Pfam protein families database. Nucleic Acids Research 40(Database issue):D290–D301. PuntaM. CoggillP. C. EberhardtR. Y. MistryJ. TateJ. BoursnellC. PangN. ForslundK. CericG. ClementsJ. HegerA. HolmL. SonnhammerE. L. EddyS. R. BatemanA. FinnR. D. 2012 The Pfam protein families database Nucleic Acids Research 40 Database issue D290 D301 Search in Google Scholar

Ratnappan, R., Vadnal, J., Keaney, M., Eleftherianos, I., O’Halloran, D., and Hawdon, J. M. 2016. RNA-mediated gene knockdown by microinjection in the model entomopathogenic nematode Heterorhabditis bacteriophora. Parasites Vectors 9:160. RatnappanR. VadnalJ. KeaneyM. EleftherianosI. O’HalloranD. HawdonJ. M. 2016 RNA-mediated gene knockdown by microinjection in the model entomopathogenic nematode Heterorhabditis bacteriophora Parasites Vectors 9 160 Search in Google Scholar

Reynolds, A. M., Dutta, T. K., Curtis, R. H. C., Powers, S. J., Gaur, H. S., and Kerry, B. R. 2011. Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes. Journal of the Royal Society Interface 8: 568–577. ReynoldsA. M. DuttaT. K. CurtisR. H. C. PowersS. J. GaurH. S. KerryB. R. 2011 Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes Journal of the Royal Society Interface 8 568 577 Search in Google Scholar

Riddle, D. L., Blumenthal, T., Meyer, B. J., and Priess, J. R. 1997. Introduction to Caenorhabditis elegans. Pp. in D. L. Riddle, T. Blumenthal, B. J. Meyer, J. R. Priess, eds. C. Elegans II, vol. 2. New York: Cold Spring Harbor Laboratory Press. RiddleD. L. BlumenthalT. MeyerB. J. PriessJ. R. 1997 Introduction to Caenorhabditis elegans Pp. in RiddleD. L. BlumenthalT. MeyerB. J. PriessJ. R. eds. C. Elegans II 2 New York Cold Spring Harbor Laboratory Press Search in Google Scholar

Robertson, H. M. and Thomas, J. H. 2006. The putative chemoreceptor families of C. elegans (January 06, 2006). The C. elegans Research Community, 28 ed. WormBook. doi/10.1895/wormbook.1.66.1, http://www.wormbook.org. RobertsonH. M. ThomasJ. H. 2006 The putative chemoreceptor families of C. elegans (January 06, 2006) The C. elegans Research Community 28 ed. WormBook 10.1895/wormbook.1.66.1 http://www.wormbook.org Open DOISearch in Google Scholar

Rosenbaum, D. M., Rasmussen, S. G. F., and Kobilka, B. K. 2009. The structure and function of G-protein-coupled receptors. Nature 459:356–363. RosenbaumD. M. RasmussenS. G. F. KobilkaB. K. 2009 The structure and function of G-protein-coupled receptors Nature 459 356 363 Search in Google Scholar

Sadowski, M. I., and Parish, J. H. 2003. Automated generation and refinement of protein signatures: case study with G-protein coupled receptors. Bioinformatics 19:727–734. SadowskiM. I. ParishJ. H. 2003 Automated generation and refinement of protein signatures: case study with G-protein coupled receptors Bioinformatics 19 727 734 Search in Google Scholar

Schiöth, H. B., and Fredriksson, R. 2005. The GRAFS Classification System of G-protein coupled receptors in comparative perspective. General and Comparative Endocrinology 142:94–101. SchiöthH. B. FredrikssonR. 2005 The GRAFS Classification System of G-protein coupled receptors in comparative perspective General and Comparative Endocrinology 142 94 101 Search in Google Scholar

Sgourakis, N. G., Bagos, P. G., and Hamodrakas, S. J. 2005. Prediction of the coupling specificity of GPCRs to four families of G-proteins using hidden Markov models and artificial neural networks. Bioinformatics 21: 4101–4106. SgourakisN. G. BagosP. G. HamodrakasS. J. 2005 Prediction of the coupling specificity of GPCRs to four families of G-proteins using hidden Markov models and artificial neural networks Bioinformatics 21 4101 4106 Search in Google Scholar

Sgourakis, N. G., Bagos, P. G., Papasaikas, P. K., and Hamodrakas, S. J. 2005. A method for the prediction of GPCRs coupling specificity to G-proteins using refined profile hidden Markov models. BMC Bioinformatics 6:104. SgourakisN. G. BagosP. G. PapasaikasP. K. HamodrakasS. J. 2005 A method for the prediction of GPCRs coupling specificity to G-proteins using refined profile hidden Markov models BMC Bioinformatics 6 104 Search in Google Scholar

Shivakumara, T. N., Dutta, T. K., Chaudhary, S., von Reuss, S. H., Williamson, V. M., and Rao, U. 2019. Homologs of Caenorhabditis elegans chemosensory genes have roles in behavior and chemotaxis in the root-knot nematode Meloidogyne incognita. Molecular Plant Microbe Interactions 32:876–887. ShivakumaraT. N. DuttaT. K. ChaudharyS. von ReussS. H. WilliamsonV. M. RaoU. 2019 Homologs of Caenorhabditis elegans chemosensory genes have roles in behavior and chemotaxis in the root-knot nematode Meloidogyne incognita Molecular Plant Microbe Interactions 32 876 887 Search in Google Scholar

Shivakumara, T. N., Dutta, T. K., and Rao, U. 2018. A novel in vitro chemotaxis bioassay to assess the response of Meloidogyne incognita towards various test compounds. Journal of Nematology 50:487–494. ShivakumaraT. N. DuttaT. K. RaoU. 2018 A novel in vitro chemotaxis bioassay to assess the response of Meloidogyne incognita towards various test compounds Journal of Nematology 50 487 494 Search in Google Scholar

Sonnabend, A., Spahn, V., Stech, M., Zemella, A., Stein, C., and Kubick, S. 201. Production of G-protein-coupled receptors in an insect-based cell-free system. Biotechnology and Bioengineering 114:2328–2338. SonnabendA. SpahnV. StechM. ZemellaA. SteinC. KubickS. 201 Production of G-protein-coupled receptors in an insect-based cell-free system Biotechnology and Bioengineering 114 2328 2338 Search in Google Scholar

Sriram, K., and Insel, P. A. 2018. G-protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Molecular Pharmacology 93:251–258. SriramK. InselP. A. 2018 G-protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Molecular Pharmacology 93 251 258 Search in Google Scholar

Suwa, M. 2014. Bioinformatics tools for predicting GPCR gene functions. Advances in Experimental Medicine and Biology 796:205–224. SuwaM. 2014 Bioinformatics tools for predicting GPCR gene functions Advances in Experimental Medicine and Biology 796 205 224 Search in Google Scholar

Theodoropoulou, M., Tsaousis, G., Litou, Z., Bagos, P., and Hamodrakas, S. 2013. Gpcrpipe: A pipeline for the detection of G-protein-coupled receptors in proteomes. TheodoropoulouM. TsaousisG. LitouZ. BagosP. HamodrakasS. 2013 Gpcrpipe: A pipeline for the detection of G-protein-coupled receptors in proteomes Search in Google Scholar

Thomas, J. H., and Robertson, H. M. 2008. The Caenorhabditis chemoreceptor gene families. BMC Biology 6:42. ThomasJ. H. RobertsonH. M. 2008 The Caenorhabditis chemoreceptor gene families BMC Biology 6 42 Search in Google Scholar

Troemel, E. R., Chou, J. H., Dwyer, N. D., Colbert, H. A., and Bargmann, C. I. 1995. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83: 207–218. TroemelE. R. ChouJ. H. DwyerN. D. ColbertH. A. BargmannC. I. 1995 Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans Cell 83 207 218 Search in Google Scholar

Trzaskowski, B., Latek, D., Yuan, S., Ghoshdastider, U., Debinski, A., and Filipek, S. 2012. Action of molecular switches in GPCRs-theoretical and experimental studies. Current Medicinal Chemistry 19:1090–1109. TrzaskowskiB. LatekD. YuanS. GhoshdastiderU. DebinskiA. FilipekS. 2012 Action of molecular switches in GPCRs-theoretical and experimental studies Current Medicinal Chemistry 19 1090 1109 Search in Google Scholar

Tsirigos, K. D., Peters, C., Shu, N., Käll, L., and Elofsson, A. 2015. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Research 43:W401–407. TsirigosK. D. PetersC. ShuN. KällL. ElofssonA. 2015 The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides Nucleic Acids Research 43 W401 407 Search in Google Scholar

Tusnády, G. E., and Simon, I. 1998. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. Journal of Molecular Biology 283:489–506. TusnádyG. E. SimonI. 1998 Principles governing amino acid composition of integral membrane proteins: application to topology prediction Journal of Molecular Biology 283 489 506 Search in Google Scholar

Tusnády, G. E., and Simon, I. 2001. The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850. TusnádyG. E. SimonI. 2001 The HMMTOP transmembrane topology prediction server Bioinformatics 17 849 850 Search in Google Scholar

Vidal, B., Aghayeva, U., Sun, H., Wang, C., Glenwinkel, L., Bayer, E. A., and Hobert, O. 2018. An atlas of Caenorhabditis elegans chemoreceptor expression. PLOS Biology 16: e2004218. VidalB. AghayevaU. SunH. WangC. GlenwinkelL. BayerE. A. HobertO. 2018 An atlas of Caenorhabditis elegans chemoreceptor expression PLOS Biology 16 e2004218 Search in Google Scholar

Wallin, E., and von Heijne, G. 1998. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Science 7:1029–1038. WallinE. von HeijneG. 1998 Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms Protein Science 7 1029 1038 Search in Google Scholar

Warnock, N. D., Wilson, L., Patten, C., Fleming, C. C., Maule, and A. G., Dalzell, J. J. 2017. Nematode neuropeptides as transgenic nematicides. PLOS Pathogens 13: e1006237. WarnockN. D. WilsonL. PattenC. FlemingC. C. MauleA. G. DalzellJ. J. 2017 Nematode neuropeptides as transgenic nematicides PLOS Pathogens 13 e1006237 Search in Google Scholar

Wess, J. 1998. Molecular basis of receptor/G-protein-coupling selectivity. Pharmacology & Therapeutics 80:231–264. WessJ. 1998 Molecular basis of receptor/G-protein-coupling selectivity Pharmacology & Therapeutics 80 231 264 Search in Google Scholar

Wheeler, N. J., Heimark, Z. W., Airs, P. M., Mann, A., Bartholomay, L. C., and Zamanian, M. 2020. Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes. PLOS Biology 18: e3000723. WheelerN. J. HeimarkZ. W. AirsP. M. MannA. BartholomayL. C. ZamanianM. 2020 Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes PLOS Biology 18 e3000723 Search in Google Scholar

Wistrand, M., Käll, L., and Sonnhammer, E. L. L. 2006. a general model of G-protein-coupled receptor sequences and its application to detect remote homologs. Protein Science 15:509–521. WistrandM. KällL. SonnhammerE. L. L. 2006 a general model of G-protein-coupled receptor sequences and its application to detect remote homologs Protein Science 15 509 521 Search in Google Scholar

Wong, S. K. F. 2003. G-protein selectivity is regulated by multiple intracellular regions of GPCRs. Neurosignals 12:1–12. WongS. K. F. 2003 G-protein selectivity is regulated by multiple intracellular regions of GPCRs Neurosignals 12 1 12 Search in Google Scholar

Xiao, X., Wang, P., and Chou, K. C. 2009. GPCR-CA: A Cellular Automaton Image Approach for predicting G-protein-coupled receptor functional classes. Journal of Computational Chemistry 30: 1414–1423. XiaoX. WangP. ChouK. C. 2009 GPCR-CA: A Cellular Automaton Image Approach for predicting G-protein-coupled receptor functional classes Journal of Computational Chemistry 30 1414 1423 Search in Google Scholar

eISSN:
2640-396X
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Life Sciences, other