Accès libre

Urban Expansion and its Influence on Land Surface Temperature: A Case Study of Patna City, India

,  et   
25 déc. 2024
À propos de cet article

Citez
Télécharger la couverture

Abdulaziz, A. M., Hurtado, J, J. M., & Al‐Douri, R. (2009). Application of multitemporal Landsat data to monitor land cover changes in the Eastern Nile Delta region, Egypt. International Journal of Remote Sensing, 30(11), 2977-2996. https://doi.org/10.1080/01431160802558675Search in Google Scholar

Aboelnour, M., & Engel, B. A. (2018). Application of remote sensing techniques and geographic information systems to analyze land surface temperature in response to land use/land cover change in Greater Cairo Region, Egypt. Journal of Geographic Information System, 10(1), 57-88. https://doi.org/10.4236/jgis.2018.101003Search in Google Scholar

Ahmad, M. Y., Munim N. H., & Sekhar, S. (2023). Analysis of changes in land use land cover and seasonal land surface temperature using remote sensing data and GIS in PMC Area, Patna, Bihar. Biospectra, 18(1), 1-8. https://doi.org/10.1016/j.heliyon.2021.e07623Search in Google Scholar

Andronis, V., Karathanassi, V., Tsalapati, V., Kolokoussis, P., Miltiadou, M., & Danezis, C. (2022). Time series analysis of Landsat data for investigating the relationship between land surface temperature and forest changes in Paphos forest, Cyprus. Remote Sensing, 14(4), 1010. https://doi.org/10.3390/rs14041010Search in Google Scholar

Anupriya, R. S., & Rubeena, T. A. (2024). Spatio-temporal urban land surface temperature variations and heat stress vulnerability index in Thiruvananthapuram city of Kerala, India. Geology, Ecology, and Landscapes, 1-17. https://doi.org/10.1080/24749508.2023.2182088Search in Google Scholar

Arulbalaji, P., Padmalal, D., & Maya, K. (2020). Impact of urbanization and land surface temperature changes in a coastal town in Kerala, India. Environmental Earth Sciences, 79(17), 1–18. https://doi.org/10.1007/s12665-020-09120-1Search in Google Scholar

Asgarian, A., Amiri, B. J., & Sakieh, Y. (2015). Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosystems, 18, 209-222.Search in Google Scholar

Ayanlade, A., Aigbiremolen, M. I., & Oladosu, O. R. (2021). Variations in urban land surface temperature intensity over four cities in different ecological zones. Scientific Reports, 11(1), 20537.Search in Google Scholar

Bhagyanagar, R., Kawal, B. M., Dwarakish, G. S., & Surathkal, S. (2012). Land use/land cover change and urban expansion during 1983-2008 in the coastal area of Dakshina Kannada district, South India. Journal of Applied Remote Sensing, 6(1), 063576-063576. https://doi.org/10.1117/1.JRS.6.063576Search in Google Scholar

Biswas, S., & Ghosh, S. (2022). Estimation of land surface temperature in response to land use/land cover transformation in Kolkata city and its suburban area, India. International Journal of Urban Sciences, 26(4), 604-631. https://doi.org/10.1080/12265934.2021.1997633Search in Google Scholar

Census of India (2011). Office of the Registrar General & Census Commissioner, Ministry of Home Affairs, Government of India. https://censusindia.gov.in/nada/index.php/homeSearch in Google Scholar

Chakraborti, S., Banerjee, A., Sannigrahi, S., Pramanik, S., Maiti, A., & Jha, S. (2019). Assessing the dynamic relationship among land use pattern and land surface temperature: A spatial regression approach. Asian Geographer, 36(2), 93-116. https://doi.org/10.1080/10225706.2019.1623054Search in Google Scholar

Chanu, C. S., Elango, L., & Shankar, G. R. (2021). A geospatial approach for assessing the relation between changing land use/land cover and environmental parameters including land surface temperature of Chennai metropolitan city, India. Arabian Journal of Geosciences, 14, 1-16. https://doi.org/10.1007/s12517-020-06409-0Search in Google Scholar

Chen, X. L., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133-146. https://doi.org/10.1016/j.rse.2005.11.016Search in Google Scholar

Chettry, V. and Surawar, M. (2021). Assessment of urban sprawl characteristics in Indian cities using remote sensing: case studies of Patna, Ranchi, and Srinagar. Environmental Development and Sustainability, 23, 11913-11935. https://doi.org/10.1007/s10668-020-01149-3Search in Google Scholar

Choudhury, D., Das, K., & Das, A. (2019). Assessment of land use land cover changes and its impact on variations of land surface temperature in Asansol-Durgapur Development Region. The Egyptian Journal of Remote Sensing and Space Science, 22(2), 203-218. https://doi.org/10.1016/j.ejrs.2018.05.004Search in Google Scholar

Cohen, B. (2006). Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technology in Society, 28(1), 63–80. https://doi.org/10.1016/j.techsoc.2005.10.005Search in Google Scholar

Das, S., & Angadi, D. P. (2020). Land use-land cover (LULC) transformation and its relation with land surface temperature changes: A case study of Barrackpore Subdivision, West Bengal, India. Remote Sensing Applications: Society and Environment, 100322. https://doi.org/10.1016/j.rsase.2020.100322Search in Google Scholar

Dong, N., Liu, Z., Luo, M., Fang, C., & Lin, H. (2019). The Effects of Anthropogenic Land Use Changes on Climate in China Driven by Global Socioeconomic and Emission Scenarios. Earth’s Future, 7(7), 784-804. https://doi.org/10.1029/2018EF000932Search in Google Scholar

Dunn, A. M., Hofmann, O. S., Waters, B., & Witchel, E. (2011). Cloaking malware with the trusted platform module. In Proceedings of the 20th USENIX Security Symposium (pp. 395-482 410).Search in Google Scholar

Fu, P., & Weng, Q. (2016). A time series analysis of urbanization-induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sensing of Environment, 175, 205-214. https://doi.org/10.1016/j.rse.2015.12.040Search in Google Scholar

Gogoi, P. P., Vinoj, V., Swain, D., Roberts, G., Dash, J., & Tripathy, S. (2019). Land use and land cover change effect on surface temperature over Eastern India. Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-019-45213-zSearch in Google Scholar

Gohain, K. J., Mohammad, P., & Goswami, A. (2021). Assessing the impact of land use land cover changes on land surface temperature over Pune city, India. Quaternary International, 575, 259-269. https://doi.org/10.1016/j.quaint.2020.04.052Search in Google Scholar

Govind, N. R., & Ramesh, H. (2019). The impact of spatiotemporal patterns of land use land cover and land surface temperature on an urban cool island: a case study of Bengaluru. Environmental monitoring and assessment, 191, 1-20. https://doi.org/10.1007/s10661-019-7440-1Search in Google Scholar

Halder, B., Bandyopadhyay, J., Al-Hilali, A. A., Ahmed, A. M., Falah, M. W., Abed, S. A., Falih, K. T., Khedher, K. M., Scholz, M., & Yaseen, Z. M. (2022). Assessment of urban green space dynamics influencing the surface urban heat stress using advanced geospatial techniques. Agronomy, 12(9), 2129. https://doi.org/10.3390/agronomy12092129Search in Google Scholar

IPCC, Intergovernmental Panel on Climate Change. Climate Change 2001: Impacts, Adaption, Vulnerability; McCarths, J.J., Ed.; Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001.Search in Google Scholar

Iqbal, M. Z., & Iqbal, M. J. (2018). Land use detection using remote sensing and GIS (A case study of Rawalpindi Division). American Journal of Remote Sensing, 6(1), 39-51.Search in Google Scholar

Kafy, A. A., Rahman, M. S., Hasan, M. M., & Islam, M. (2020). Modelling future land use land cover changes and their impacts on land surface temperatures in Rajshahi, Bangladesh. Remote Sensing Applications: Society and Environment, 18, 100314. https://doi.org/10.1016/j.rsase.2020.100314Search in Google Scholar

Kayet, N., Pathak, K., Chakrabarty, A., & Sahoo, S. (2016). Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand. Modelling Earth Systems and Environment, 2(3), 1-10. https://doi.org/10.1007/s40808-016-0159-xSearch in Google Scholar

Ke, X., Men, H., Zhou, T., Li, Z., & Zhu, F. (2021). Variance of the impact of urban green space on the urban heat island effect among different urban functional zones: A case study in Wuhan. Urban Forestry & Urban Greening, 62, 127159. https://doi.org/10.1016/j.ufug.2021.127159Search in Google Scholar

Khan, D., Bano, S., & Khan, N. (2024). Spatio-temporal analysis of urbanization effects: unravelling land use and land cover dynamics and their influence on land surface temperature in Aligarh City. Geology, Ecology, and Landscapes, 1-25. https://doi.org/10.1080/24749508.2024.2409488Search in Google Scholar

Khare, V. R., Vajpai, A., & Gupta, D. (2021). A big picture of urban heat island mitigation strategies and recommendation for India. Urban Climate, 37, 100845. https://doi.org/10.1016/j.uclim.2021.100845Search in Google Scholar

Kimuku, C.W. and Ngigi, M. (2017) Study of Urban Heat Island Trends to Aid in Urban Planning in Nakuru County-Kenya. Journal of Geographic Information System, 9, 309-325. https://doi.org/10.4236/jgis.2017.93019Search in Google Scholar

Kumari, B., Tayyab, M., Shahfahad, Salman, Mallick, J., Khan, M., F., & Rahman, A. (2018). Satellite-Driven Land Surface Temperature (LST) Using Landsat 5, 7 (TM/ETM+ SLC) and Landsat 8 (OLI/TIRS) Data and Its Association with Built-Up and Green Cover Over Urban Delhi, India. Remote Sensing in Earth System Science, 1, 63-78. https://doi.org/10.1007/s41976-018-0004-2Search in Google Scholar

Luck, M., & Wu, J. (2002). A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landscape Ecology, 17(4), 327-339. https://doi.org/10.1023/A:1020512723753Search in Google Scholar

Luyssaer, S., Jammet, M., Stoy, P. C., Estel, S., Pongratz, J., Ceschia, E., Churkina, G., Don, A., Erb, K., Ferlicoq, M., & Gielen, B. (2014). Land management and land-cover change have impacts of similar magnitude on surface temperature. Nature Climate Change, 4(5), 389-393.Search in Google Scholar

Mahmood, R., Pielke, R. A., Hubbard, K. G., Niyogi, D., Bonan, G., Lawrence, P., McNider, R., McAlpine, C., Etter, A., Gameda, S., Qian, B., Carleton, A., Beltran-Przekurat, A., Chase, T., Quintanar, A. I., Adegoke, J. O., Vezhapparambu, S., Conner, G., Asefi, S., … Syktus, J. (2010). Impacts of land use/land cover change on climate and future research priorities. Bulletin of the American Meteorological Society, 91(1), 37-46. https://doi.org/10.1175/2009BAMS2769.1Search in Google Scholar

Mishra, V.N., Rai, P.K. (2016). A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arabian Journal of Geosciences, 9, 249. https://doi.org/10.1007/s12517-015-2138-3Search in Google Scholar

Mohammed, A. A. A. S., Shankar, K., & Hasan, R. N. (2019). Data on time series analysis of land surface temperature variation in response to vegetation indices in twelve Wereda of Ethiopia using mono window, split window algorithm and spectral radiance model. Data in Brief, 27, 104773. https://doi.org/10.1016/j.dib.2019.104773Search in Google Scholar

Mutani, G., & Todeschi, V. (2020). The effects of green roofs on outdoor thermal comfort, urban heat island mitigation and energy savings. Atmosphere, 11(2), 123. https://doi.org/10.3390/atmos11020123Search in Google Scholar

Nastran, M., Kobal, M., & Eler, K. (2019). Urban heat islands in relation to green land use in European cities. Urban Forestry & Urban Greening, 37, 33-41. https://doi.org/10.1016/j.ufug.2018.01.008Search in Google Scholar

Nayak, S., & Mandal, M. (2012). Impact of land-use and land-cover changes on temperature trends over Western India. Current Science, 102(8), 1166.Search in Google Scholar

Nemani, R., Pierce, L., Running, S., & Goward, S. (1993). Developing satellite-derived estimates of surface moisture status. Journal of Applied Meteorology and Climatology, 32(3), 548-557. https://doi.org/10.1175/1520-0450(1993)032%3C0548:DSDEOS%3E2.0.CO;2Search in Google Scholar

Omar, P.J., Kumar, V. (2021). Land surface temperature retrieval from TIRS data and its relationship with land surface indices. Arabian Journal of Geosciences, 14:1897. https://doi.org/10.1007/s12517-021-08255-0Search in Google Scholar

Pandey, A., Mondal, A., Guha, S., Upadhyay, P. K., & Singh, D. (2022). Land use status and its impact on land surface temperature in Imphal city, India. Geology, Ecology, and Landscapes, 1-15.Search in Google Scholar

Peng, J., Jia, J., Liu, Y., Li, H., & Wu, J. (2018). Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Remote Sensing of Environment, 215, 255–267. https://doi.org/10.1016/j.rse.2018.06.010Search in Google Scholar

Petropoulos, G. P., Ireland, G., Griffiths, H., Islam, T., Kalivas, D., Anagnostopoulos, V., ... & Srivastava, P. K. (2016). Spatiotemporal estimates of surface Soil Moisture from space using the Ts/VI feature space. In Satellite Soil Moisture Retrieval (pp. 91-108). Elsevier. https://doi.org/10.1016/C2014-0-03396-5.Search in Google Scholar

Rawat, J. S., Biswas, V., & Kumar, M. (2013). Changes in land use/cover using geospatial techniques: A case study of Ramnagar town area, district Nainital, Uttarakhand, India. Egyptian Journal of Remote Sensing and Space Science, 16(1), 111-117. https://doi.org/10.1016/j.ejrs.2013.04.002Search in Google Scholar

Sadiq Khan, M., Ullah, S., Sun, T., Rehman, A. U., & Chen, L. (2020). Land-use/land-cover changes and its contribution to urban heat Island: A case study of Islamabad, Pakistan. Sustainability, 12(9), 3861. https://doi.org/10.3390/su12093861Search in Google Scholar

Saha, S., Saha, A., Das, M., Saha, A., Sarkar, R., & Das, A. (2021). Analyzing spatial relationship between land use/land cover (LULC) and land surface temperature (LST) of three urban agglomerations (UAs) of Eastern India. Remote Sensing Applications: Society and Environment, 22, 100507. https://doi.org/10.1016/j.rsase.2021.100507Search in Google Scholar

Sahana, M., Dutta, S., & Sajjad, H. (2019). Assessing land transformation and its relation with land surface temperature in Mumbai city, India using geospatial techniques. International Journal of Urban Sciences,23(2), 205–225. https://doi.org/10.1080/.2018.1488604Search in Google Scholar

Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 109(40), 16083-16088. https://doi.org/10.1073/pnas.1211658109Search in Google Scholar

Shao, M., Tang, X., Zhang, Y., & Li, W. (2006). City clusters in China: air and surface water pollution. Frontiers in Ecology and the Environment, 353-361. https://www.jstor.org/stable/3868881Search in Google Scholar

Shimoda, H., Kimura, T., (2018). Missions and sensors. In: Liang, S. (Ed.), Comprehensive Cool Remote Sensing. Volume 1. Elsevier Inc, pp. 246-279.Search in Google Scholar

Shukla, A., & Jain, K. (2021). Analyzing the impact of changing landscape patterns and dynamics on land surface temperature in Lucknow city, India. Urban Forestry & Urban Greening, 58, 126877. https://doi.org/10.1016/j.ufug.2020.126877Search in Google Scholar

Shukla, P. R., Skeg, J., Buendia, E. C., Masson Delmotte, V., Pörtner, H. O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., Van Diemen, S., & Ferrat, M. (2019). Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.Search in Google Scholar

Song, Y., Song, X., & Shao, G. (2020). Effects of green space patterns on Urban thermal environment at multiple spatial-temporal scales. Sustainability, 12(17), 6850. https://doi.org/10.3390/su12176850Search in Google Scholar

Tariq, A., Siddiqui, S., Sharifi, A., & Shah, S. H. I. A. (2022). Impact of spatio-temporal land surface temperature on cropping pattern and land use and land cover changes using satellite imagery, Hafizabad District, Punjab, Province of Pakistan. Arabian Journal of Geosciences, 15(11), 1045. https://doi.org/10.1080/01431160304987Search in Google Scholar

Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S. W., Caetano, M., & Kieu, H. V. (2017). Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry, Remote Sensing, 124, 119-132. https://doi.org/10.1016/j.isprsjprs.2017.01.001Search in Google Scholar

United Nations, (2014). World urbanization prospects: The 2014 revision, highlights. Department of Economic and Social Affairs. Population Division, United Nations.Search in Google Scholar

Vivekananda, G. N., Swathi, R., & Sujith, A. V. L. N. (2020). Multi-temporal image analysis for LULC classification and change detection. European Journal of Remote Sensing, 10-11. https://doi.org/10.1080/22797254.2020.1771215Search in Google Scholar

Wang, Y. C., Hu, B. K., Myint, S. W., Feng, C. C., Chow, W. T., & Passy, P. F. (2018). Patterns of land change and their potential impacts on land surface temperature change in Yangon, Myanmar. Science of the Total Environment, 643, 738-750. https://doi.org/10.1016/j.scitotenv.2018.06.209Search in Google Scholar

Weng, Q. (2001). A remote sensing GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International Journal of Remote Sensing, 22(10), 647 1999-2014. https://doi.org/10.1080/713860788Search in Google Scholar

Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry, Remote Sensing, 64(4), 335-344. https://doi.org/10.1016/j.isprsjprs.2009.03.007Search in Google Scholar

Winkler, K., Fuchs, R., Rounsevell, M., & Herold, M. (2021). Global land use changes are four times greater than previously estimated. Nature Communications, 12(1), 1-10. https://doi.org/10.1038/s41467-021-22702-2Search in Google Scholar

Xian, G., & Crane, M. (2006). An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sensing of Environment, 104(2), 147-156. https://doi.org/10.1016/j.rse.2005.09.023Search in Google Scholar

Xu, C., Chen, G., Huang, Q., Su, M., Rong, Q., Yue, W., & Haase, D. (2022). Can improving the spatial equity of urban green space mitigate the effect of urban heat islands? An empirical study. The Science of the Total Environment, 841, 156687. https://doi.org/10.1016/j.scitotenv.2022.156687Search in Google Scholar

Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International journal of remote sensing, 24(3), 583-594. https://doi.org/10.1080/01431160304987Search in Google Scholar

Zhang, Y., & Sun, L. (2019). Spatial-temporal impacts of urban land use land cover on land surface temperature: Case studies of two Canadian urban areas. International Journal of Applied Earth Observation and Geoinformation, 75, 171–181. https://doi.org/10.1016/j.jag.2018.10.005Search in Google Scholar

Zhao, M., Cai, H., Qiao, Z., & Xu, X. (2016). Influence of urban expansion on the urban heat island effect in Shanghai. International Journal of Geographical Information Science, 30(12), 2421-2441. https://doi.org/10.1080/13658816.2016.1178389Search in Google Scholar

Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Géosciences, Géosciences, autres, Sciences de la vie, Écologie