À propos de cet article

Citez

1. World Health Organization. Global diffusion of eHealth: making universal health coverage achievable: report of the third global survey on eHealth. World Health Organization, 2017. Search in Google Scholar

2. Finegold JA, Asaria P, Francis DP. Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations. Int J Cardiol. 2013;168:934-945.10.1016/j.ijcard.2012.10.046 Search in Google Scholar

3. Kannel WB, Abbott RD, et al. Epidemiologic features of chronic atrial fibrillation: the Framingham study. N Engl J Med. 1982;306:1018-22.10.1056/NEJM198204293061703 Search in Google Scholar

4. Kralev S, Schneider K, et al. Incidence and severity of coronary artery disease in patients with atrial fibrillation undergoing first-time coronary angiography. PLoS One. 2011;6:e24964.10.1371/journal.pone.0024964 Search in Google Scholar

5. Golia E, Limongelli G, Natale F, et al. Inflammation and cardiovascular disease: from pathogenesis to therapeutic target. Curr Atheroscler Rep. 2014;16:435.10.1007/s11883-014-0435-z Search in Google Scholar

6. Goldberger JJ, Cain ME, Hohnloser SH, et al. American Heart Association/ American College of Cardiology Foundation/Heart Rhythm Society scientific statement on noninvasive risk stratification techniques for identifying patients at risk for sudden cardiac death: a scientific statement from the American Heart Association Council on Clinical Cardiology Committee on Electrocardiography and Arrhythmias and Council on Epidemiology and Prevention. Circulation. 2008;118:1497-518.10.1161/CIRCULATIONAHA.107.189375 Search in Google Scholar

7. Schmermund A, Eckert J, Schmidt M, et al. Coronary computed tomography angiography: a method coming of age. Clin Res Cardiol. 2018;107:40-48.10.1007/s00392-018-1320-5 Search in Google Scholar

8. Hadamitzky M, Taubert S, Deseive S, et al. Prognostic value of coronary computed tomography angiography during 5 years of follow-up in patients with suspected coronary artery disease. Eur Heart J. 2013;34:3277-3285.10.1093/eurheartj/eht293 Search in Google Scholar

9. Hadamitzky M, Achenbach S, Al-Mallah M, et al. Optimized prognostic score for coronary computed tomographic angiography: results from the CONFIRM registry (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter Registry). J Am Coll Cardiol. 2013;62:468-476.10.1016/j.jacc.2013.04.064 Search in Google Scholar

10. SCOT-HEART investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet. 2015;385:2383-2391.10.1016/S0140-6736(15)60291-4 Search in Google Scholar

11. Newby DE, Adamson PD, Berry C, et al. SCOT-HEART Investigators. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med. 2018;379:924-933.10.1056/NEJMoa180597130145934 Search in Google Scholar

12. Adamson PD, Williams MC, Dweck MR, et al. SCOT-HEART Investigators. Guiding therapy by coronary CT angiography improves outcomes in patients with stable chest pain. J Am Coll Cardiol. 2019;74:2058-2070.10.1016/j.jacc.2019.07.085689944631623764 Search in Google Scholar

13. Douglas PS, Hoffmann U, Patel MR, et al. PROMISE Investigators. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372:1291-1300.10.1056/NEJMoa1415516447377325773919 Search in Google Scholar

14. Budoff MJ, Dowe D, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52:1724-1732.10.1016/j.jacc.2008.07.03119007693 Search in Google Scholar

15. Maurovich-Horvat P, Ferencik M, et al. Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol. 2014;11:390-402.10.1038/nrcardio.2014.6024755916 Search in Google Scholar

16. Miller JM, Rochitte CE, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324-2336.10.1056/NEJMoa080657619038879 Search in Google Scholar

17. Nerlekar N, Ha FJ, et al. Computed tomographic coronary angiography-derived plaque characteristics predict major adverse cardiovascular events: a systematic review and meta-analysis. Circ Cardiovasc Imaging. 2018;10:e006973.10.1161/CIRCIMAGING.117.00697329305348 Search in Google Scholar

18. Soraya T. Inflammation in atherosclerosis. Elsevier. 2016;109(12):708-715. Search in Google Scholar

19. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol. 2009;27:165-197.10.1146/annurev.immunol.021908.132620273440719302038 Search in Google Scholar

20. Arida A, Protogerou AD, et al. Systemic Inflammatory Response and Atherosclerosis: The Paradigm of Chronic Inflammatory Rheumatic Diseases. Int J Mol Sci. 2018;19:1890.10.3390/ijms19071890607340729954107 Search in Google Scholar

21. Aviña-Zubieta JA, Choi HK, Sadatsafavi M, et al. Risk of cardiovascular mortality in patients with rheumatoid arthritis: A meta-analysis of observational studies. Arthritis Care Res. 2008;59:1690-1697.10.1002/art.2409219035419 Search in Google Scholar

22. Rodean IP, Lazar L, Opincariu D, et al. Association between periodontal disease, coronary calcium score and markers of subclinical atherosclerosis in patients with unstable angina – a CT-based sub-study from the ATHERODENT clinical trial. European Heart Journal – Cardiovascular Imaging. 2020;21:jez319.299.10.1093/ehjci/jez319.299 Search in Google Scholar

23. Dorn SD, Sandler RS. Inflammatory bowel disease is not a risk factor for cardiovascular disease mortality: results from a systematic review and meta-analysis. Am J Gastroenterol. 2007;102:662-667.10.1111/j.1572-0241.2006.01018.x17156143 Search in Google Scholar

24. Zanoli L, Signorelli SS, Inserra G, Castellino P. Subclinical Atherosclerosis in Patients With Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis. Angiology. 2017;68:463.10.1177/000331971667507627784730 Search in Google Scholar

25. Kristensen SL, Ahlehoff O, Lindhardsen J, et al. Disease activity in inflammatory bowel disease is associated with increased risk of myocardial infarction, stroke and cardiovascular death – a Danish nationwide cohort study. PLoS One. 2013;8:e56944.10.1371/journal.pone.0056944357407923457642 Search in Google Scholar

26. Yarur AJ, Deshpande AR, Pechman DM, et al. Inflammatory bowel disease is associated with an increased incidence of cardiovascular events. Am J Gastroenterol. 2011;106:741-747.10.1038/ajg.2011.6321386828 Search in Google Scholar

27. Aniwan S, Pardi DS, Tremaine WJ, Loftus EV Jr. Increased Risk of Acute Myocardial Infarction and Heart Failure in Patients With Inflammatory Bowel Diseases. Clin Gastroenterol Hepatol. 2018;16:1607-1615.10.1016/j.cgh.2018.04.031615282829702298 Search in Google Scholar

28. Kirchgesner J, Beaugerie L, Carrat F for the BERENICE study group, et al. Increased risk of acute arterial events in young patients and severely active IBD: a nationwide French cohort study. Gut. 2018;67:1261-1268.10.1136/gutjnl-2017-31401528647686 Search in Google Scholar

29. Tsai MS, Lin CL, Chen HP, Lee PH, Sung FC, Kao CH. Long-term Risk of Acute Coronary Syndrome in Patients with Inflammatory Bowel Disease: A 13-year Nationwide Cohort Study in an Asian Population. Inflammatory Bowel Diseases. 2014;20:502-507.10.1097/01.MIB.0000441200.10454.4f24412991 Search in Google Scholar

30. Weissman S, Sinh P, Mehta TI, et al. Atherosclerotic cardiovascular disease in inflammatory bowel disease: The role of chronic inflammation. World J Gastrointest Pathophysiol. 2020;11:104-113.10.4291/wjgp.v11.i5.104740375332832194 Search in Google Scholar

31. Wang H, Liu Z, Shao J, et al. Immune and Inflammation in Acute Coronary Syndrome: Molecular Mechanisms and Therapeutic Implications. J Immunol Res. 2020;2020:4904217.10.1155/2020/4904217745030932908939 Search in Google Scholar

32. Libby P, Tabas I, Fredman G, Fisher EA. Inflammation and its resolution as determinants of acute coronary syndromes. Circulation Research. 2014;114:1867-1879.10.1161/CIRCRESAHA.114.302699407876724902971 Search in Google Scholar

33. Lahdentausta L, Leskelä J, Winkelmann A, et al. Serum MMP-9 diagnostics, prognostics, and activation in acute coronary syndrome and its recurrence. Journal of Cardiovascular Translational Research. 2018;11:210-220.10.1007/s12265-018-9789-x Search in Google Scholar

34. Kai H, Ikeda H, Yasukawa H, et al. Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes. J Am Coll Cardiol. 1998;32:368-372.10.1016/S0735-1097(98)00250-2 Search in Google Scholar

35. Inokubo Y, Hanada H, Ishizaka H, Fukushi T, Kamada T, Okumura K. Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. American Heart Journal. 2001;141:211-217.10.1067/mhj.2001.11223811174334 Search in Google Scholar

36. Derosa G, D’Angelo A, Scalise F, et al. Comparison between metalloproteinases-2 and -9 in healthy subjects, diabetics, and subjects with acute coronary syndrome. Heart and Vessels. 2007;22:361-370.10.1007/s00380-007-0989-618043992 Search in Google Scholar

37. Dumitriu IE, Baruah P, Finlayson CJ, et al. High levels of costimulatory receptors OX40 and 4-1BB characterize CD4+CD28null T cells in patients with acute coronary syndrome. Circulation Research. 2012;110:857-869.10.1161/CIRCRESAHA.111.26193322282196 Search in Google Scholar

38. Saigusa R, Winkels H, Ley K. T cell subsets and functions in atherosclerosis. Nature Reviews Cardiology. 2020;17:387-401.10.1038/s41569-020-0352-5787221032203286 Search in Google Scholar

39. Rezaee-Zavareh MS, Tohidi M, Sabouri A, Ramezani-Binabaj M, Sadeghi-Ghahrodi M, Einollahi B. Infectious and coronary artery disease. ARYA Atheroscler. 2016;12:41-49. Search in Google Scholar

40. Higuchi ML, Ramires JAF. Infectious agents in coronary atheromas: a possible role in the pathogenesis of plaque rupture and acute myocardial infarction. Revista do Instituto de Medicina Tropical de São Paulo. 2002;44:217-224.10.1590/S0036-46652002000400007 Search in Google Scholar

41. Shah PK. Plaque disruption and thrombosis: potential role of inflammation and infection. Cardiol Rev. 2000;8:31-39.10.1097/00045415-200008010-00007 Search in Google Scholar

42. Pesonen E, El-Segaier M, Persson K, et al. Infections as a stimulus for coronary occlusion, obstruction, or acute coronary syndromes. Therapeutic Advances in Cardiovascular Disease. 2009;3:447-454.10.1177/175394470934559819773293 Search in Google Scholar

43. Thygesen K, Alpert JS, Jaffe AS, et al. Third Universal Definition of Myocardial Infarction. Circulation. 2012;126:2020-2035.10.1161/CIR.0b013e31826e105822923432 Search in Google Scholar

44. Musher DM, Abers MS, Corrales-Medina VF. Acute Infection and Myocardial Infarction. N Engl J Med. 2019;380:171-176.10.1056/NEJMra180813730625066 Search in Google Scholar

45. Ridker PM, Cushman M, Stampfer MJ, et al. Inflammation, aspirin and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973-97910.1056/NEJM1997040333614019077376 Search in Google Scholar

46. Ridker P, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836-843.10.1056/NEJM20000323342120210733371 Search in Google Scholar

47. Ridker PM. High sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation. 2001;103:1813-1818.10.1161/01.CIR.103.13.181311282915 Search in Google Scholar

48. Ridker P, Rifai N, Rose L, et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347:1557-1565.10.1056/NEJMoa02199312432042 Search in Google Scholar

49. Ridker PM, Buring JE, Cook NR, et al. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14,719 initially healthy American women. Circulation. 2003;107:391-397.10.1161/01.CIR.0000055014.62083.05 Search in Google Scholar

50. Koenig W, Sund M, Fröhlich M, et al. C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men. Circulation. 1999;99:237-242.10.1161/01.CIR.99.2.237 Search in Google Scholar

51. Coelho Graça D, Golaz O, Magnin J-L, et al. CRP-Based Cardiovascular Risk Assessment: New Conventional CRP Assay Fit for Purpose? The Journal of Applied Laboratory Medicine. 2018;2:952-959. Search in Google Scholar

52. Danesh J, Wheeler JG, Hirschfield GM. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350:1387-1397.10.1056/NEJMoa03280415070788 Search in Google Scholar

53. Wang TJ, Gona P, Larson MG. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med. 2006;355:2631-2639.10.1056/NEJMoa05537317182988 Search in Google Scholar

54. Blankenberg S, Zeller T, Saarela O. Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: the MONICA, risk, genetics, archiving, and monograph (MORGAM) biomarker project. Circulation. 2010;121:2388-2397.10.1161/CIRCULATIONAHA.109.90141320497981 Search in Google Scholar

55. Seo WW, Kim H-L, Kim Y-J, et al. Incremental prognostic value of high-sensitive C-reactive protein in patients undergoing coronary computed tomography angiography. Journal of Cardiology. 2016;68:222-22810.1016/j.jjcc.2015.09.010 Search in Google Scholar

56. Kubo T, Matsuo Y, Hayashi Y, et al. High-sensitivity C-reactive protein and plaque composition in patients with stable angina pectoris: a virtual histology intravascular ultrasound study. Coron Artery Dis. 2009;20:531-535.10.1097/MCA.0b013e328332a6b0 Search in Google Scholar

57. Sanchís J, Bodí V, Llácer A, et al. Relación de los valores de proteína C reactiva con los hallazgos angiográficos y los marcadores de necrosis en el síndrome coronario agudo sin elevación del segmento ST. Rev Esp Cardiol. 2004;57:382-387.10.1016/S0300-8932(04)77122-5 Search in Google Scholar

58. Inoue T, Kato T, Uchida T, et al. Local release of C-reactive protein from vulnerable plaque or coronary arterial wall injured by stenting. J Am Coll Cardiol. 2005;46:239-245.10.1016/j.jacc.2005.04.02916022949 Search in Google Scholar

59. Mani P, Puri R, Schwartz GG, et al. Association of Initial and Serial C-Reactive Protein Levels With Adverse Cardiovascular Events and Death After Acute Coronary Syndrome: A Secondary Analysis of the VISTA-16 Trial. JAMA Cardiol. 2019;4:314-320.10.1001/jamacardio.2019.0179648478530840024 Search in Google Scholar

60. Lucci C, Cosentino N, Genovese S, et al. Prognostic impact of admission high-sensitivity C-reactive protein in acute myocardial infarction patients with and without diabetes mellitus. Cardiovasc Diabetol. 2020;19:183.10.1186/s12933-020-01157-7757682033081810 Search in Google Scholar

61. Suleiman M, Aronson D, Reisner SA, et al. Admission C-reactive protein levels and 30-day mortality in patients with acute myocardial infarction. Am J Med. 2003;115:695-701.10.1016/j.amjmed.2003.06.00814693321 Search in Google Scholar

62. Morariu M, Márton E, Mester A, et al. Association Between Acute Inflammatory Response and Infarct Size in Stemi Patients Undergoing Primary PCI. Journal Of Cardiovascular Emergencies. 2018;4:140-146.10.2478/jce-2018-0017 Search in Google Scholar

63. Lazzerini PE, Capecchi PL, Laghi-Pasini F. Systemic inflammation and arrhythmic risk: lessons from rheumatoid arthritis. Eur Heart J. 2017;38:1717-1727. Search in Google Scholar

64. Ungprasert P, Srivali N, Kittanamongkolchai W. Risk of incident atrial fibrillation in patients with rheumatoid arthritis: a systematic review and meta-analysis. Int J Rheum Dis. 2017;20:434-441.10.1111/1756-185X.1282026692475 Search in Google Scholar

65. Ahlehoff O, Gislason GH, Jørgensen CH, et al. Psoriasis and risk of atrial fibrillation and ischaemic stroke: a danish nationwide cohort study. Eur Heart J. 2012;33:2054-2064.10.1093/eurheartj/ehr28521840930 Search in Google Scholar

66. Efe TH, Cimen T, Ertem AG, et al. Atrial Electromechanical properties in inflammatory bowel disease. Echocardiography. 2016;33:1309-1316.10.1111/echo.1326127158773 Search in Google Scholar

67. Seferović PM, Ristić AD, Maksimović R, et al. Cardiac arrhythmias and conduction disturbances in autoimmune rheumatic diseases. Rheumatology. 2006;45:39-42.10.1093/rheumatology/kel31516980722 Search in Google Scholar

68. Korantzopoulos P, Letsas KP, Tse G, et al. Inflammation and atrial fibrillation: A comprehensive review. J Arrhythm. 2018;34:394-401.10.1002/joa3.12077611147730167010 Search in Google Scholar

69. Wu N, Xiang Y, Wu L, et al. Association of inflammatory factors with occurrence and recurrence of atrial fibrillation: A meta-analysis. Int J Cardiol. 2013;169:62-72.10.1016/j.ijcard.2013.08.07824095158 Search in Google Scholar

70. Chung MK, Martin DO, Sprecher D, et al. C-reactive protein elevation in patients with atrial arrhythmias: Inflammatory mechanisms and persistence of atrial fibrillation. Circulation. 2001;104:2886-2891.10.1161/hc4901.10176011739301 Search in Google Scholar

71. Rienstra M, Sun JX, Magnani JW, et al. White blood cell count and risk of incident atrial fibrillation (from the Framingham Heart Study). Am J Cardiol. 2012;109:533-537.10.1016/j.amjcard.2011.09.049327011822100030 Search in Google Scholar

72. Weymann A, Ali-Hasan-Al-Saegh S, Sabashnikov A, et al. Prediction of new-onset and recurrent atrial fibrillation by complete blood count tests: a comprehensive systematic review with meta-analysis. Med Sci Monit Basic Res. 2017;23:179-222.10.12659/MSMBR.903320543953528496093 Search in Google Scholar

73. Shao Q, Chen K, Rha SW, Lim HE, Li G, Liu T. Usefulness of neutrophil/ lymphocyte ratio as a predictor of atrial fibrillation: a meta-analysis. Arch Med Res. 2015;46:199-206.10.1016/j.arcmed.2015.03.01125980945 Search in Google Scholar

eISSN:
2501-8132
Langue:
Anglais