Accès libre

Conformable fractional-order derivative based adaptive FitzHugh-Nagumo neuron model

À propos de cet article

Citez

G. Long, G. Fang, “A review of biologically plausible neuron models for spiking neural networks.” AIAA Infotech@ Aerospace 2010, vol. 3540, 2010. Search in Google Scholar

W. Gerstner, R. Naud, “How good are neuron models?” Science, vol.326, no.5951, p.p. 379-380, 2009. Search in Google Scholar

R. FitzHugh, “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical journal, vol. 1, no. 6, pp. 445-466, 1961. Search in Google Scholar

J. Nagumo, S. Arimoto, and S. Yoshizawa. “An active pulse transmission line simulating nerve axon.” Proceedings of the IRE vol. 50, no.10, pp. 2061-2070, 1962. Search in Google Scholar

A. L. Hodgkin, and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve.” The Journal of physiology, vol. 117, no. 4, pp. 500-544, 1952. Search in Google Scholar

E. Izhikevich, “Simple Model of Spiking Neurons,” IEEE Transactions on Neural Networks, vol. 14, no. 6, pp. 1569-1572, 2003. Search in Google Scholar

Simple Model of Spiking Neurons, [Online]. Available: https://www.izhikevich.org/publications/spikes.htm (Access Date: 28/12/2021). Search in Google Scholar

L. F. Abbott, “Lapicque’s introduction of the integrate-and-fire model neuron (1907)” Brain research bulletin, vol. 50, no. 5-6, pp. 303-304, 1999. Search in Google Scholar

M. J. Richardson, N. Brunel, and V. Hakim, “From subthreshold to firing-rate resonance.” Journal of neurophysiology vol. 89, no.5, pp. 2538-2554, 2003. Search in Google Scholar

T. Wondimu, T. M. Marinov, and F. Santamaria, “Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model.” PLoS computational biology vol. 10, no.3, pp. e1003526, 2014. Search in Google Scholar

W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics: From single neurons to networks and models of cognition, Cambridge University Press, 2014. Search in Google Scholar

K. G. Pearson, “Neural adaptation in the generation of rhythmic behavior.” Annual review of physiology, vol. 62, no.1, pp. 723-753, 2000. Search in Google Scholar

S. Chung, X. Li, and S. B. Nelson, “Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo.” Neuron, vol.34, no.3, pp. 437-446, 2002. Search in Google Scholar

D. Valério, J. Machado, and V. Kiryakova, “Some pioneers of the applications of fractional calculus”, Fract. Calc. Appl. Anal., vol.17, no.2, pp.552–578, 2014. Search in Google Scholar

S.M. Shah, R. Samar, N. M. Khan, and M. A. Z. Raja, “Fractional-order adaptive signal processing strategies for active noise control systems.” Nonlinear Dynamics, Vol. 85, pp. 1363–1376, 2016. Search in Google Scholar

D. del-Castillo-Negrete, B. A. Carreras, and V. E. Lynch, “Fractional diffusion in plasma turbulence.” Physics of Plasmas, vol. 11, no. 8, pp. 3854-3864, 2004. Search in Google Scholar

V.E. Tarasov, “Review of some promising fractional physical models.” International Journal of Modern Physics B, vol. 27, no.09, pp. 1330005, 2013. Search in Google Scholar

M. Caputo, “Linear Models of Dissipation whose Q is almost Frequency Independent II”, Geophysical Journal International, vol. 13, no. 5, pp. 529–539, 1967. Search in Google Scholar

R. Agarwal, M. Belmekki, and M. Benchohra. “A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative.” Advances in Difference Equations, vol. 2009, pp. 1-47, 2009. Search in Google Scholar

R. Scherer, S. L. Kalla, Y. Tang, and J. Huang, “The Grünwald–Letnikov method for fractional differential equations.” Computers & Mathematics with Applications, vol. 62, no.3, pp. 902-917, 2011. Search in Google Scholar

R. Khalil, M. A. Horani, A. Yousef, and M. Sababheh, “A new definition of fractional derivative.” Journal of computational and applied mathematics, vol. 264, pp. 65–70, 2014. Search in Google Scholar

T. Abdeljawad, T. “On conformable fractional calculus.” Journal of computational and Applied Mathematics, vol. 279, pp. 57-66, 2015. Search in Google Scholar

A. O. Akdemir, H. Dutta, and A. Atangana, eds. Fractional order analysis: theory, methods and applications. John Wiley & Sons, 2020. Search in Google Scholar

R. Sikora, R. “Fractional derivatives in electrical circuit theory–critical remarks.” Archives of Electrical Engineering, vol. 66, no. 1, pp. 155-163, 2017. Search in Google Scholar

T. J. Anastasio, “The fractional-order dynamics of brainstem vestibulo-oculomotor neurons.” Biological cybernetics, vol. 72, no. 1, pp. 69-79, 1994. Search in Google Scholar

K. Moaddy, A. G. Radwan, K. N. Salama, S. Momani, and I. Hashim, “The fractional-order modeling and synchronization of electrically coupled neuron systems.” Computers & Mathematics with Applications, vol. 64, no.10, pp. 3329-3339, 2012. Search in Google Scholar

M. Yavuz, B. Yaşkıran, “Conformable Derivative Operator in Modelling Neuronal Dynamics.” Applications & Applied Mathematics, vol. 13, no.2, 2018. Search in Google Scholar

M. Armanyos, A. G. Radwan. “Fractional-order Fitzhugh-Nagumo and Izhikevich neuron models.” 2016 13th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON), pp. 1-5, 2016. Search in Google Scholar

L. Martínez, J. J. Rosales, C. A. Carreño, and J. M. Lozano, “Electrical circuits described by fractional conformable derivative.” International Journal of Circuit Theory and Applications, vol. 46, no.5, pp. 1091-1100, 2018. Search in Google Scholar

U. Palaz, R. Mutlu, “Analysis of a Capacitor Modelled with Conformable Fractional Derivative Under DC and Sinusoidal Signals.” Celal Bayar University Journal of Science, vol. 17, no. 2, p. p. 193-198, 2021.Search in Google Scholar

A. Petrovas, S. Lisauskas, and A. Slepikas. “Electronic model of fitzhugh-nagumo neuron.” Elektronika Ir Elektrotechnika, vol. 122, no .6, pp. 117-120, 2012.Search in Google Scholar

M. Chen, J. Qi, Q. Xu, and B. Bao, “Quasi-period, periodic bursting and bifurcations in memristor-based FitzHugh-Nagumo circuit.” AEU-International Journal of Electronics and Communications, vol. 110, pp. 152840, 2019.Search in Google Scholar

E. M. Izhikevich, R. FitzHugh, “FitzHugh-nagumo model.” Scholarpedia, vol. 1, no. 9, p. p. 1349, 2006. Search in Google Scholar

T. Kanamaru, “Van der Pol oscillator.” Scholarpedia vol. 2, no. 1 pp. 2202, 2007. Search in Google Scholar

eISSN:
1339-309X
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other