À propos de cet article

Citez

[1] G. Xiao, J. He, Y. Qiao, F. Wang, Q. Xia, X. Wang, L. Yu, Z. Lu, and C.-M. Li, “Facile and Low-Cost Fabrication of a Thread/Paper-Based Wearable System for Simultaneous Detection of Lactate and pH in Human Sweat”, Advanced Fiber Materials, vol. 2, no. 5, pp. 265-278, 2020.10.1007/s42765-020-00046-8 Search in Google Scholar

[2] M. Wang, Y. Tan, D. Li, G. Xu, D. Yin, Y. Xiao, T. Xu, X. Chen, X. Zhu, and X. Shi, “Negative Isolation of Circulating Tumor Cells Using a Microfluidic Platform Integrated with Streptavidin-Functionalized PLGA Nanofibers”, Advanced Fiber Materials, vol. 3, no. 3, pp. 192-202, 2021.10.1007/s42765-021-00075-x Search in Google Scholar

[3] D. Erickson, D. Sinton, and D. Li, “Joule heating and heat transfer in poly (dimethylsiloxane) microfluidic systems”, Lab on a Chip, vol. 3, no. 3, pp. 141-149, 2003.10.1039/b306158b15100765 Search in Google Scholar

[4] C. H. Chen, Y. Lu, M. L. Sin, K. E. Mach, D. D. Zhang, V. Gau, J. C. Liao, and P. K. Wong, “Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels”, Analytical Chemistry, vol. 82, no. 3, pp. 1012-1019, 2010.10.1021/ac9022764 Search in Google Scholar

[5] N. A. Papadopoulou, A. B. Florou, and M. I. Prodromidis, “Sensitive determination of iron using disposable Nafion- coated screen-printed graphite electrodes”, Analytical Letters, vol. 51, no. (1-2), pp. 198-208, 2018.10.1080/00032719.2017.1302464 Search in Google Scholar

[6] H. Lee, J. Choi, E. Jeong, S. Baek, H. C. Kim, J.-H. Chae, Y. Koh, S. W. Seo, J.-S. Kim, and S. J. Kim, “dCas9-mediated nanoelectrokinetic direct detection of target gene for liquid biopsy”, Nano letters, vol. 18, no. 12, pp. 7642-7650, 2018.10.1021/acs.nanolett.8b03224 Search in Google Scholar

[7] A. Perera, D. T. Phan, S. Pudasaini, Y. Liu, and C. Yang, “Enhanced sample pre-concentration by ion concentration polarization on a para n coated converging microfluidic paper based analytical platform”, Biomicrofluidics, vol. 14, no. 1, pp, 014103, 2020.10.1063/1.5133946694194431933713 Search in Google Scholar

[8] X. Yang, Z. Yin, L. Li, and H. Zou, “The Fabrication of Poly (methyl methacrylate)(PMMA) Microfluidic Chips by Laser Patterning and Electrohydrodynamic (EHD) Printing”, Lasers in Engineering, pp, vol 47(1-3), pp. 183-194, 2020. Search in Google Scholar

[9] N. Yang, C. Chen, P. Wang, J. Sun, and H. Mao, “Structure optimization method of microfluidic paper chip based on image grey-level statistics for chromogenic reaction”, Chemical engineering and processing-process Intensification, vol, 143 pp,, 2019.10.1016/j.cep.2019.107627 Search in Google Scholar

[10] R. Chantiwas, S. Park, S. A. Soper, B. C. Kim, S. Takayama, V. Sunkara, H. Hwang, and Y. K. Cho, “Flexible fabrication and applications of polymer nanochannels and nanoslits”, Chemical Society Reviews, vol. 40, no. 7, pp. 3677-3702, 2011.10.1039/c0cs00138d Search in Google Scholar

[11] Y. C. Chiu, E. M. Brey, and L. V. Perez, “A study of the intrinsic autofluorescence of poly (ethylene glycol)-co-((L)-lactic acid) diacrylate”, Journal of Fluorescence, vol. 22, no. 3, pp. 907-913, 2012.10.1007/s10895-011-1029-622218971 Search in Google Scholar

[12] Z. Yin and H. Zou, “Experimental and numerical study on PDMS collapse for fabrication of micro/nanochannels”, Journal of Electrical Engineering-Elektrotechnicky Casopis, vol. 67, no. 6, pp. 414-420, 2016.10.1515/jee-2016-0060 Search in Google Scholar

[13] S. Schneider, D. Gruner, A. Richter, and P. Loskill, “Membrane integration into PDMS-free microfluidic platforms for organ-on-chip and analytical chemistry applications”, Lab on a Chip, vol. 21, no. 10, pp. 1866-1885, 2021.10.1039/D1LC00188D Search in Google Scholar

[14] J. B. You, B. Lee, Y. Choi, C.-S. Lee, M. Peter, S. G. Im, and S. S. Lee, “Nanoadhesive layer to prevent protein absorption in a poly(dimethylsiloxane) microfluidic device”, Biotechniques, vol. 69, no. 1, pp. 47-52, 2020.10.2144/btn-2020-002532372656 Search in Google Scholar

[15] Y. Xiangdong, L. Hongzhong, and D. Yucheng, “Research on the cast molding process for high quality PDMS molds”, Microelectronic Engineering, vol. 86, no. 3, pp. 310-313, 2009.10.1016/j.mee.2008.10.011 Search in Google Scholar

[16] K. Hyewon, L. Jiyeon, P. Joonhyung, and H. L. Hong, “An improved method of preparing composite poly(dimethylsiloxane) moulds”, Nanotechnology, vol. 17, no. 1, pp. 197-200, 2006.10.1088/0957-4484/17/1/032 Search in Google Scholar

[17] T. Wu, C. Ke, and Y. Wang, “Fabrication of trapezoidal cross-sectional microchannels on PMMA with a multi-pass translational method by CO2 laser”, Optik, vol, 183 pp. 953-961, 2019.10.1016/j.ijleo.2019.02.147 Search in Google Scholar

[18] E. Nikolidakis and A. Antoniadis, “FEM modeling simulation of laser engraving”, The International Journal of Advanced Manufacturing Technology, pp, vol 105(7-8), pp. 3489-3498, 2019.10.1007/s00170-019-04603-3 Search in Google Scholar

[19] S. Prakash and S. Kumar, “Experimental investigations and analytical modeling of multi-pass CO2 laser processing on PMMA”, Precision Engineering, vol, 49 pp. 220-234, 2017.10.1016/j.precisioneng.2017.02.010 Search in Google Scholar

[20] S. Prakash and S. Kumar, “Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask”, Optics & Laser Technology, vol, 94 pp. 180-192, 2017.10.1016/j.optlastec.2017.03.034 Search in Google Scholar

[21] M. Moradi, O. Mehrabi, T. Azdast, and K. Y. Benyounis, “Enhancement of low power CO2 laser cutting process for injection molded polycarbonate”, Optics & Laser Technology, vol, 96 pp. 208-218, 2017.10.1016/j.optlastec.2017.05.022 Search in Google Scholar

[22] S. Zhang and X. Chen, “CO2 laser ablation of microchannel on PMMA substrate for Koch fractal micromixer”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 41, no. 1, pp, 45, 2019.10.1007/s40430-018-1551-4 Search in Google Scholar

[23] K. Kheloufi, E. H. Amara, and A. Benzaoui, “Numerical simulation of transient three-dimensional temperature and kerf formation in laser fusion cutting”, Journal of Heat Transfer, vol. 137, no. 11, pp, 112101, 2015.10.1115/1.4030658 Search in Google Scholar

[24] P. Nagarajan and D. Yao, “Uniform Shell Patterning Using Rubber-Assisted Hot Embossing Process. II. Process Analysis”, Polymer Engineering and Science, vol. 51, no. 3, pp. 601-608, 2011.10.1002/pen.21854 Search in Google Scholar

[25] H. Hocheng and C. C. Nien, “Numerical analysis of effects of mold features and contact friction on cavity filling in the nanoim-printing process”, Journal of Microlithography Microfabrication and Microsystems, vol. 5, no. 1, pp. 011004, 2006.10.1117/1.2177286 Search in Google Scholar

[26] Z. Wang, A. A. Volinsky, and N. D. Gallant, “Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument”, Journal of Applied Polymer Science, vol. 131, no. 22, pp,, 2014.10.1002/app.41050 Search in Google Scholar

[27] K. Myeongsub, M. Byeong-Ui, and C. H. Hidrovo, “Enhancement of the Thermo-mechanical Properties of PDMS Molds for the hot Embossing of PMMA Microfluidic Devices”, Journal of Micromechanics and Microengineering, vol. 23, no. 9, pp, 095024, 2013.10.1088/0960-1317/23/9/095024 Search in Google Scholar

[28] M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices”, Journal of Micromechanics and Microengineering, vol. 18, no. 6, pp,, 2008.10.1088/0960-1317/18/6/067001 Search in Google Scholar

[29] V. Sunkara, D. K. Park, and Y. K. Cho, “Versatile method for bonding hard and soft materials”, RSC Advances, vol. 2, no. 24, pp. 9066-9070, 2012.10.1039/c2ra20880f Search in Google Scholar

[30] K. Kim, S. W. Park, and S. S. Yang, “The optimization of PDMS-PMMA bonding process using silane primer”, Biochip Journal, vol. 4, no. 2, pp. 148-154, 2010.10.1007/s13206-010-4210-0 Search in Google Scholar

[31] W. Ouyang, Z. Li, and J. Han, “Pressure-modulated selective electrokinetic trapping for direct enrichment, purification, and detection of nucleic acids in human serum”, Analytical Chemistry, vol. 90, no. 19, pp. 11366-11375, 2018.10.1021/acs.analchem.8b02330 Search in Google Scholar

eISSN:
1339-309X
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other