This work is licensed under the Creative Commons Attribution 4.0 International License.
Abdullah, M. H. A., Aziz, N., Abdulkadir, S. J., Akhir, E. A. P., & Talpur, N. (2022). Event detection and information extraction strategies from text: A preliminary study using GENIA corpus. In International Conference on Emerging Technologies and Intelligent Systems(pp. 118-127). Cham: Springer International Publishing.AbdullahM. H. A.AzizN.AbdulkadirS. J.AkhirE. A. P.TalpurN., (2022). Event detection and information extraction strategies from text: A preliminary study using GENIA corpus. InInternational Conference on Emerging Technologies and Intelligent Systems(pp. 118-127). Cham: Springer International Publishing.Search in Google Scholar
Abdullah, M. H. A., Aziz, N., Abdulkadir, S. J., Alhussian, H. S. A., & Talpur, N. (2023). Systematic literature review of information extraction from textual data: Recent methods, applications, trends, and challenges. IEEE Access, 11, 10535-10562. https://doi.org/10.1109/ACCESS.2023.3240898AbdullahM. H. A.AzizN.AbdulkadirS. J.AlhussianH. S. A.TalpurN., (2023). Systematic literature review of information extraction from textual data: Recent methods, applications, trends, and challenges. IEEE Access, 11, 10535-10562. https://doi.org/10.1109/ACCESS.2023.3240898Search in Google Scholar
Adnan, K., & Akbar, R. (2019a). An analytical study of information extraction from unstructured and multidimensional big data. Journal of Big Data, 6(1), 91. https://doi.org/10.1186/s40537-019-0254-8AdnanK.AkbarR., (2019a). An analytical study of information extraction from unstructured and multidimensional big data. Journal of Big Data, 6(1), 91. https://doi.org/10.1186/s40537-019-0254-8Search in Google Scholar
Adnan, K., & Akbar, R. (2019b). An analytical study of information extraction from unstructured and multidimensional big data. Journal of Big Data, 6(1), 91. https://doi.org/10.1186/s40537-019-0254-8AdnanK.AkbarR., (2019b). Limitations of information extraction methods and techniques for heterogeneous unstructured big data. International Journal of Engineering Business Management, 11, 1-23. https://doi.org/10.1177/1847979019890771Search in Google Scholar
Adnan, K., Akbar, R., Khor, S. W., & Ali, A. B. A. (2019). Role and challenges of unstructured big data in healthcare. In N. Sharma, A. Chakrabarti, & V. E. Balas (Eds.), Data management, analytics and innovation: Proceedings of ICDMAI 2019 (Vol. 1, pp. 301-323). SpringerAdnanK.AkbarR.KhorS. W.AliA. B. A., (2019). Role and challenges of unstructured big data in healthcare. In SharmaN.ChakrabartiA.BalasV. E. (Eds.), Data management, analytics and innovation: Proceedings of ICDMAI 2019 (Vol. 1, pp. 301-323). Springer.Search in Google Scholar
Akkurt, F., Gungor, O., Marşan, B., Gungor, T., Ozturk Basaran, B., Özgür, A., & Uskudarli, S. (2024). Evaluating the quality of a corpus annotation scheme using pretrained language models. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 6504-6514). Torino, Italia.AkkurtF.GungorO.MarşanB.GungorT.Ozturk BasaranB.ÖzgürA.UskudarliS., (2024). Evaluating the quality of a corpus annotation scheme using pretrained language models. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 6504-6514). Torino, Italia.Search in Google Scholar
Akmal, M., & Romadhony, A. (2020). Corpus development for Indonesian product named entity recognition using semi-supervised approach. In 2020 international conference on data science and its applications (ICoDSA) (pp. 1-5). IEEE.AkmalM.RomadhonyA., (2020). Corpus development for Indonesian product named entity recognition using semi-supervised approach. In 2020 international conference on data science and its applications (ICoDSA) (pp. 1-5). IEEE.Search in Google Scholar
Alkaissi, H., & McFarlane, S. I. (2023). Artificial hallucinations in ChatGPT: Implications in scientific writing. Cureus, 15(2), e35179. https://doi.org/10.7759/cureus.35179AlkaissiH.McFarlaneS. I., (2023). Artificial hallucinations in ChatGPT: Implications in scientific writing.Cureus, 15(2), e35179.https://doi.org/10.7759/cureus.35179Search in Google Scholar
Bossy, R., Jourde, J., Manine, A.-P., Veber, P., Alphonse, E., van de Guchte, M., Bessières, P., & Nédellec, C. (2012). BioNLP Shared Task - The Bacteria Track. BMC Bioinformatics, 13(Suppl 11), S3. https://doi.org/10.1186/1471-2105-13-S11-S3BossyR.JourdeJ.ManineA.-P.VeberP.AlphonseE.van de GuchteM.BessièresP.NédellecC., (2012). BioNLP Shared Task-The Bacteria Track.BMC Bioinformatics, 13(Suppl 11), S3.https://doi.org/10.1186/1471-2105-13-S11-S3Search in Google Scholar
Buchholz, S., & Marsi, E. (2006). CoNLL-X Shared Task on multilingual dependency parsing. In Proceedings of the tenth conference on computational natural language learning (CoNLL-X) (pp. 149-164).BuchholzS.MarsiE., (2006). CoNLL-X Shared Task on multilingual dependency parsing. In Proceedings of the tenth conference on computational natural language learning (CoNLL-X) (pp. 149-164).Search in Google Scholar
Cohen, K. B., Lanfranchi, A., Choi, M. J., Bada, M., Baumgartner, W. A., Jr., Panteleyeva, N., Verspoor, K., Palmer, M., & Hunter, L. E. (2017). Coreference annotation and resolution in the Colorado Richly Annotated Full Text (CRAFT) corpus of biomedical journal articles. BMC Bioinformatics, 18(1), 372. https://doi.org/10.1186/s12859-017-1775-9CohenK. B.LanfranchiA.ChoiM. J.BadaM.BaumgartnerW. A.Jr.PanteleyevaN.VerspoorK.PalmerM.HunterL. E., (2017). Coreference annotation and resolution in the Colorado Richly Annotated Full Text (CRAFT) corpus of biomedical journal articles.BMC Bioinformatics, 18(1), 372.https://doi.org/10.1186/s12859-017-1775-9Search in Google Scholar
Csanády, B., Muzsai, L., Vedres, P., Nádasdy, Z., & Lukács, A. (2024). LlamBERT: Large-scale low-cost data annotation in NLP. arXiv. https://doi.org/10.48550/arXiv.2403.15938CsanádyB.MuzsaiL.VedresP.NádasdyZ.LukácsA., (2024). LlamBERT: Large-scale low-cost data annotation in NLP.arXiv. https://doi.org/10.48550/arXiv.2403.15938Search in Google Scholar
Deléger, L., Bossy, R., Chaix, E., Ba, M., Ferré, A., Bessières, P., & Nédellec, C. (2016). Overview of the Bacteria Biotope Task at BioNLP Shared Task 2016. In Proceedings of the 4th BioNLP Shared Task Workshop (pp. 12-22). Berlin, Germany.DelégerL.BossyR.ChaixE.BaM.FerréA.BessièresP.NédellecC., (2016). Overview of the Bacteria Biotope Task at BioNLP Shared Task 2016. In Proceedings of the 4th BioNLP Shared Task Workshop (pp. 12-22). Berlin, Germany.Search in Google Scholar
Frei, J., & Kramer, F. (2023). Annotated dataset creation through large language models for non-English medical NLP. Journal of Biomedical Informatics, 145, 104478. https://doi.org/10.1016/j.jbi.2023.104478FreiJ.KramerF., (2023). Annotated dataset creation through large language models for non-English medical NLP.Journal of Biomedical Informatics, 145, 104478.https://doi.org/10.1016/j.jbi.2023.104478Search in Google Scholar
Gao, C. A., Howard, F. M., Markov, N. S., Dyer, E. C., Ramesh, S., Luo, Y., & Pearson, A. T. (2023). Comparing scientific abstracts generated by ChatGPT to real abstracts with detectors and blinded human reviewers. NPJ Digital Medicine, 6, Article 75. https://doi.org/10.1038/s41746-023-00774-5GaoC. A.HowardF. M.MarkovN. S.DyerE. C.RameshS.LuoY.PearsonA. T., (2023). Comparing scientific abstracts generated by ChatGPT to real abstracts with detectors and blinded human reviewers.NPJ Digital Medicine, 6, Article 75.https://doi.org/10.1038/s41746-023-00774-5Search in Google Scholar
Gao, J., Zhao, H., Yu, C., & Xu, R. (2023). Exploring the feasibility of ChatGPT for event extraction. arXiv. https://doi.org/10.48550/arXiv.2303.03836 Retrieved March 01, 2023, from https://ui.adsabs.harvard.edu/abs/2023arXiv230303836GGaoJ.ZhaoH.YuC.XuR., (2023). Exploring the feasibility of ChatGPT for event extraction. arXiv. https://doi.org/10.48550/arXiv.2303.03836 Retrieved March 01, 2023, from https://ui.adsabs.harvard.edu/abs/2023arXiv230303836GSearch in Google Scholar
Grynbaum, M. M., & Mac, R. (2023). The Times sues OpenAI and Microsoft over A.I. use of copyrighted work. The New York Times. Retrieved 15 April 2024 from https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.htmlGrynbaumM. M.MacR., (2023). The Times sues OpenAI and Microsoft over A.I. use of copyrighted work.The New York Times. Retrieved 15 April 2024 from https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.htmlSearch in Google Scholar
Hadi, M. U., Al-Tashi, Q., Qureshi, R., Shah, A., Muneer, A., Irfan, M., Zafar, A., Shaikh, M., Akhtar, N., Wu, J., & Mirjalili, S. (2023). Large language models: A comprehensive survey of its applications, challenges, limitations, and future prospects. https://doi.org/10.36227techrxiv.23589741.v4HadiM. U.Al-TashiQ.QureshiR.ShahA.MuneerA.IrfanM.ZafarA.ShaikhM.AkhtarN.WuJ.MirjaliliS., (2023). Large language models: A comprehensive survey of its applications, challenges, limitations, and future prospects.https://doi.org/10.36227techrxiv.23589741.v4Search in Google Scholar
Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y. J., Madotto, A., & Fung, P. (2023). Survey of hallucination in natural language generation. ACM Computing Surveys, 55(12), Article 248. https://doi.org/10.1145/3571730JiZ.LeeN.FrieskeR.YuT.SuD.XuY.IshiiE.BangY. J.MadottoA.FungP., (2023). Survey of hallucination in natural language generation.ACM Computing Surveys, 55(12), Article 248.https://doi.org/10.1145/3571730Search in Google Scholar
Jurafsky, D., Chai, J., Schluter, N., & Tetreault, J. (2020). Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online. https://aclanthology.org/2020.acl-main.0.pdfJurafskyD.ChaiJ.SchluterN.TetreaultJ., (2020). Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online.https://aclanthology.org/2020.acl-main.0.pdfSearch in Google Scholar
Kim, J.-D., Ohta, T., & Tsujii, J. (2008). Corpus annotation for mining biomedical events from literature. BMC Bioinformatics, 9(1), 10. https://doi.org/10.1186/1471-2105-9-10KimJ.-D.OhtaT.TsujiiJ., (2008). Corpus annotation for mining biomedical events from literature.BMC Bioinformatics, 9(1), 10.https://doi.org/10.1186/1471-2105-9-10Search in Google Scholar
Kim, J.-D., Wang, Y., Takagi, T., & Yonezawa, A. (2011). Overview of GENIA event task in BioNLP shared task 2011. In Proceedings of the BioNLP Shared Task 2011 Workshop, (pp. 7-15). Portland, Oregon, USA.KimJ.-D.WangY.TakagiT.YonezawaA., (2011). Overview of GENIA event task in BioNLP shared task 2011.In Proceedings of the BioNLP Shared Task 2011 Workshop, (pp. 7-15). Portland, Oregon, USA.Search in Google Scholar
Kim, J.-D., Ohta, T., Tateisi, Y., & Tsujii, J. (2003). GENIAcorpus-semantically annotated corpus for bio-textmining. Bioinformatics, 19(Suppl 1), i180-182. https://doi.org/10.1093/bioinformatics/btg1023KimJ.-D.OhtaT.TateisiY.TsujiiJ., (2003). GENIAcorpus-semantically annotated corpus for bio-textmining.Bioinformatics, 19(Suppl 1), i180-i182.https://doi.org/10.1093/bioinformatics/btg1023Search in Google Scholar
Lever, J., Altman, R., & Kim, J.-D. (2020). Extending TextAE for annotation of non-contiguous entities. Genomics Inform, 18(2), e15. https://doi.org/10.5808/GI.2020.18.2.e15LeverJ.AltmanR.KimJ.-D., (2020). Extending TextAE for annotation of non-contiguous entities.Genomics Inform, 18(2), e15.https://doi.org/10.5808/GI.2020.18.2.e15Search in Google Scholar
Li, G., Wang, P., Xie, J., Cui, R., & Deng, Z. (2022). FEED: A Chinese financial event extraction dataset constructed by distant supervision, In Proceedings of the 10th International Joint ConferenceonKnowledgeGraphs, Virtual Event, Thailand. https://doi.org/10.1145/3502223.3502229LiG.WangP.XieJ.CuiR.DengZ., (2022). FEED: A Chinese financial event extraction dataset constructed by distant supervision, In Proceedings of the 10th International Joint Conference on Knowledge Graphs, Virtual Event, Thailand.https://doi.org/10.1145/3502223.3502229Search in Google Scholar
Li, M., Shi, T., Ziems, C., Kan, M.-Y., Chen, N. F., Liu, Z., & Yang, D. (2023). Coannotating: Uncertainty-guided work allocation between human and large language models for data annotation. arXiv. https://doi.org/10.48550/arXiv.2310.15638LiM.ShiT.ZiemsC.KanM.-Y.ChenN. F.LiuZ.YangD., (2023). Coannotating: Uncertainty-guided work allocation between human and large language models for data annotation. arXiv. https://doi.org/10.48550/arXiv.2310.15638Search in Google Scholar
Li, Z. (2023). The dark side of ChatGPT: legal and ethical challenges from stochastic parrots and hallucination. arXiv. https://doi.org/10.48550/arXiv.2304.14347LiZ., (2023). The dark side of ChatGPT: legal and ethical challenges from stochastic parrots and hallucination. arXiv. https://doi.org/10.48550/arXiv.2304.14347Search in Google Scholar
Lin, Y. (2020). Multilingual multitask joint neural information extraction (Doctoral dissertation, University of Illinois at Urbana-Champaign). https://hdl.handle.net/2142/109521LinY., (2020). Multilingual multitask joint neural information extraction (Doctoral dissertation, University of Illinois at Urbana-Champaign).https://hdl.handle.net/2142/109521Search in Google Scholar
Lin, Y., Ji, H., Huang, F., & Wu, L. (2020). A joint neural model for information extraction with global features. InProceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 7999-8009).LinY.JiH.HuangF.WuL., (2020). A joint neural model for information extraction with global features. InProceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 7999-8009).Search in Google Scholar
Linguistic Data Consortium (2005). ACE (Automatic Content Extraction) English annotation guidelines for events. https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdfLinguistic Data Consortium, (2005). ACE (Automatic Content Extraction) English annotation guidelines for events.https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdfSearch in Google Scholar
Liu, X., Luo, Z., & Huang, H. (2018). Jointly multiple events extraction via attention-based graph information aggregation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing Brussels, Belgium.LiuX.LuoZ.HuangH., (2018). Jointly multiple events extraction via attention-based graph information aggregation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language ProcessingBrussels, Belgium.Search in Google Scholar
McIntosh, T. R., Liu, T., Susnjak, T., Watters, P., Ng, A., & Halgamuge, M. N. (2024). A culturally sensitive test to evaluate nuanced GPT hallucination. IEEE Transactions on Artificial Intelligence, 5(6), 2739-2751. https://doi.org/10.1109/TAI.2023.3332837McIntoshT. R.LiuT.SusnjakT.WattersP.NgA.HalgamugeM. N., (2024). A culturally sensitive test to evaluate nuanced GPT hallucination.IEEE Transactions on Artificial Intelligence, 5(6), 2739-2751.https://doi.org/10.1109/TAI.2023.3332837Search in Google Scholar
Metz, C., & Robertson, K. (2024). OpenAI Seeks to Dismiss Parts of The New York Times’s Lawsuit. The New York Times. Retrieved 15 April 2024 from https://www.nytimes.com/2024/02/27/technology/openai-new-york-times-lawsuit.htmlMetzC.RobertsonK., (2024). OpenAI Seeks to Dismiss Parts of The New York Times’s Lawsuit.The New York Times. Retrieved 15 April 2024 from https://www.nytimes.com/2024/02/27/technology/openai-new-york-times-lawsuit.htmlSearch in Google Scholar
Mirzakhmedova, N., Gohsen, M., Chang, C. H., & Stein, B. (2024). Are large language models reliable argument quality annotators? In Conference on Advances in Robust Argumentation Machines (pp. 129-146). Cham: Springer Nature Switzerland.MirzakhmedovaN.GohsenM.ChangC. H.SteinB., (2024). Are large language models reliable argument quality annotators? In Conference on Advances in Robust Argumentation Machines (pp. 129-146). Cham: Springer Nature Switzerland.Search in Google Scholar
Nawaz, R., Thompson, P., McNaught, J., & Ananiadou, S. (2010). Meta-Knowledge Annotation of Bio-Events. In LREC (Vol. 17, pp. 2498-2507).NawazR.ThompsonP.McNaughtJ.AnaniadouS., (2010). Meta-Knowledge Annotation of Bio-Events. In LREC (Vol. 17, pp. 2498-2507).Search in Google Scholar
Nédellec, C., Bossy, R., Chaix, E., & Deléger, L. (2018). Text-mining and ontologies: New approaches to knowledge discovery of microbial diversity. arXiv. https://doi.org/10.48550/arXiv.1805.04107NédellecC.BossyR.ChaixE.DelégerL., (2018). Text-mining and ontologies: New approaches to knowledge discovery of microbial diversity. arXiv. https://doi.org/10.48550/arXiv.1805.04107Search in Google Scholar
Neves, M., & Leser, U. (2012). A survey on annotation tools for the biomedical literature. Briefings in Bioinformatics, 15(2), 327-340. https://doi.org/10.1093/bib/bbs084NevesM.LeserU., (2012). A survey on annotation tools for the biomedical literature.Briefings in Bioinformatics, 15(2), 327-340.https://doi.org/10.1093/bib/bbs084Search in Google Scholar
Neves, M., & Ševa, J. (2019). An extensive review of tools for manual annotation of documents. Briefings in Bioinformatics, 22(1), 146-163. https://doi.org/10.1093/bib/bbz130NevesM.ŠevaJ., (2019). An extensive review of tools for manual annotation of documents.Briefings in Bioinformatics, 22(1), 146-163.https://doi.org/10.1093/bib/bbz130Search in Google Scholar
O’Donnell, M. (2008). The UAM CorpusTool: Software for corpus annotation and exploration. In Proceedings of the XXVI Congreso de AESLA (Vol. 3, p. 5). Spain: AlmeriaO’DonnellM., (2008). The UAM CorpusTool: Software for corpus annotation and exploration. In Proceedings of the XXVI Congreso de AESLA (Vol. 3, p. 5). Spain: Almeria.Search in Google Scholar
Ohta, T., Kim, J.-D., & Tsujii, J. (2007). Guidelines for event annotation. Department of Information Science, Graduate School of Science, University of TokyoOhtaT.KimJ.-D.TsujiiJ., (2007). Guidelines for event annotation.Department of Information Science, Graduate School of Science, University of Tokyo.Search in Google Scholar
Ohta, T., Pyysalo, S., Rak, R., Rowley, A., Chun, H.-W., Jung, S.-J., Choi, S.-P., Ananiadou, S., & Tsujii, J. (2013). Overview of the Pathway Curation (PC) task of BioNLP Shared Task 2013. In Proceedings of the BioNLP Shared Task 2013 Workshop Sofia, Bulgaria.OhtaT.PyysaloS.RakR.RowleyA.ChunH.-W.JungS.-J.ChoiS.-P.AnaniadouS.TsujiiJ., (2013). Overview of the Pathway Curation (PC) task of BioNLP Shared Task 2013. In Proceedings of the BioNLP Shared Task 2013 WorkshopSofia, Bulgaria.Search in Google Scholar
Ohta, T., Pyysalo, S., & Tsujii, J. (2011). Overview of the epigenetics and post-translational modifications (EPI) task of BioNLP shared task 2011. In Proceedings of BioNLP Shared Task 2011 Workshop (pp. 16-25).OhtaT.PyysaloS.TsujiiJ., (2011). Overview of the epigenetics and post-translational modifications (EPI) task of BioNLP shared task 2011. In Proceedings of BioNLP Shared Task 2011 Workshop (pp. 16-25).Search in Google Scholar
Papazian, F., Bossy, R., & Nédellec, C. (2012). AlvisAE: A collaborative web text annotation editor for knowledge acquisition. In Proceedings of the Sixth Linguistic Annotation Workshop (pp. 149-152).PapazianF.BossyR.NédellecC., (2012). AlvisAE: A collaborative web text annotation editor for knowledge acquisition. In Proceedings of the Sixth Linguistic Annotation Workshop (pp. 149-152).Search in Google Scholar
Pestian, J., Brew, C., Matykiewicz, P., Hovermale, D. J., Johnson, N., Cohen, K. B., & Duch, W. (2007). A shared task involving multi-label classification of clinical free text. In Biological, translational, and clinical language processing (pp. 97-104).PestianJ.BrewC.MatykiewiczP.HovermaleD. J.JohnsonN.CohenK. B.DuchW., (2007). A shared task involving multi-label classification of clinical free text. In Biological, translational, and clinical language processing (pp. 97-104).Search in Google Scholar
Pyysalo, S., Ohta, T., & Ananiadou, S. (2013). Overview of the Cancer Genetics (CG) task of BioNLP Shared Task 2013. In Proceedings of the BioNLP Shared Task 2013 Workshop Sofia, Bulgaria.PyysaloS.OhtaT.AnaniadouS., (2013). Overview of the Cancer Genetics (CG) task of BioNLP Shared Task 2013. In Proceedings of the BioNLP Shared Task 2013 WorkshopSofia, Bulgaria.Search in Google Scholar
Pyysalo, S., Ohta, T., Miwa, M., Cho, H.-C., Tsujii, J., & Ananiadou, S. (2012). Event extraction across multiple levels of biological organization. Bioinformatics, 28(18), i575-i581. https://doi.org/10.1093/bioinformatics/bts407PyysaloS.OhtaT.MiwaM.ChoH.-C.TsujiiJ.AnaniadouS., (2012). Event extraction across multiple levels of biological organization.Bioinformatics, 28(18), i575-i581.https://doi.org/10.1093/bioinformatics/bts407Search in Google Scholar
Pyysalo, S., Ohta, T., Rak, R., Sullivan, D., Mao, C., Wang, C., Sobral, B., Tsujii, J., & Ananiadou, S. (2011a). Annotation guidelines for infectious diseases event corpus. In Tech rep, Tsujii Laboratory, University of Tokyo.PyysaloS.OhtaT.RakR.SullivanD.MaoC.WangC.SobralB.TsujiiJ.AnaniadouS. (2011a). Annotation guidelines for infectious diseases event corpus. In Tech rep, Tsujii Laboratory, University of Tokyo.Search in Google Scholar
Pyysalo, S., Ohta, T., Rak, R., Sullivan, D., Mao, C., Wang, C., Sobral, B., Tsujii, J., & Ananiadou, S. (2011b). Overview of the Infectious Diseases (ID) task of BioNLP Shared Task 2011. In J. Tsujii, J.-D. Kim, & S. Pyysalo, Proceedings of BioNLP Shared Task 2011 Workshop Portland, Oregon, USA.PyysaloS.OhtaT.RakR.SullivanD.MaoC.WangC.SobralB.TsujiiJ.AnaniadouS. (2011b). Overview of the Infectious Diseases (ID) task of BioNLP Shared Task 2011. In TsujiiJ.KimJ.-D.PyysaloS, Proceedings of BioNLP Shared Task 2011 WorkshopPortland, Oregon, USA.Search in Google Scholar
Pyysalo, S., Ohta, T., Rak, R., Sullivan, D., Mao, C., Wang, C., Sobral, B., Tsujii, J., & Ananiadou, S. (2012). Overview of the ID, EPI and REL tasks of BioNLP shared task 2011. BMC Bioinformatics, 13(Suppl 11), S2. https://doi.org/10.1186/1471-2105-13-S11-S2PyysaloS.OhtaT.RakR.SullivanD.MaoC.WangC.SobralB.TsujiiJ.AnaniadouS., (2012). Overview of the ID, EPI and REL tasks of BioNLP shared task 2011.BMC Bioinformatics, 13(Suppl 11), S2.https://doi.org/10.1186/1471-2105-13-S11-S2Search in Google Scholar
Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., & Tsujii, J. (2012). BRAT: A web-based tool for NLP-assisted text annotation. In Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics (pp. 102-107).StenetorpP.PyysaloS.TopićG.OhtaT.AnaniadouS.TsujiiJ., (2012). BRAT: A web-based tool for NLP-assisted text annotation. In Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics (pp. 102-107).Search in Google Scholar
Stenetorp, P., Topić, G., Pyysalo, S., Ohta, T., Kim, J.-D., & Tsujii, J. (2011). BioNLPShared Task 2011: Supporting resources. In Proceedings of Bionlp Shared Task 2011 Workshop Portland, Oregon, USA.StenetorpP.TopićG.PyysaloS.OhtaT.KimJ.-D.TsujiiJ., (2011). BioNLPShared Task 2011: Supporting resources. In Proceedings of Bionlp Shared Task 2011 WorkshopPortland, Oregon, USA.Search in Google Scholar
Talpur, N., Abdulkadir, S. J., Alhussian, H., Hasan, M. H., Aziz, N., & Bamhdi, A. (2022). A comprehensive review of deep neuro-fuzzy system architectures and their optimization methods. Neural Computing and Applications, 34(3), 1837-1875. https://doi.org/10.1007/s00521-021-06807-9TalpurN.AbdulkadirS. J.AlhussianH.HasanM. H.AzizN.BamhdiA., (2022). A comprehensive review of deep neuro-fuzzy system architectures and their optimization methods.Neural Computing and Applications, 34(3), 1837-1875.https://doi.org/10.1007/s00521-021-06807-9Search in Google Scholar
Talpur, N., Abdulkadir, S. J., Akhir, E. A. P. A., Hasan, M. H., Alhussian, H., & Abdullah, M. H. A. (2023). A novel bitwise arithmetic optimization algorithm for the rule base optimization of deep neuro-fuzzy system. Journal of King Saud University-Computer and Information Sciences, 35(2), 821-842. https://doi.org/10.1016/j.jksuci.2023.01.020TalpurN.AbdulkadirS. J.AkhirE. A. P. A.HasanM. H.AlhussianH.AbdullahM. H. A., (2023). A novel bitwise arithmetic optimization algorithm for the rule base optimization of deep neuro-fuzzy system.Journal of King Saud University-Computer and Information Sciences, 35(2), 821-842.https://doi.org/10.1016/j.jksuci.2023.01.020Search in Google Scholar
Tan, Z., Beigi, A., Wang, S., Guo, R., Bhattacharjee, A., Jiang, B., Karami, M., Li, J., Cheng, L., & Liu, H. (2024). Large language models for data annotation: A survey. arXiv. https://doi.org/10.48550/arXiv.2402.13446TanZ.BeigiA.WangS.GuoR.BhattacharjeeA.JiangB.KaramiM.LiJ.ChengL.LiuH., (2024). Large language models for data annotation: A survey. arXiv. https://doi.org/10.48550/arXiv.2402.13446Search in Google Scholar
Törnberg, P. (2024). Best practices for text annotation with large language models. arXiv. https://doi.org/10.48550/arXiv.2402.05129TörnbergP., (2024). Best practices for text annotation with large language models. arXiv. https://doi.org/10.48550/arXiv.2402.05129Search in Google Scholar
Vauth, M., Hatzel, H. O., Gius, E., & Biemann, C. (2021). Automated event annotation in literary texts. In Proceedings of the Conference on Computational Humanities Research, CHR2021, (pp.333-345). Amsterdam, The Netherlands.VauthM.HatzelH. O.GiusE.BiemannC., (2021). Automated event annotation in literary texts. In Proceedings of the Conference on Computational Humanities Research, CHR2021, (pp.333-345). Amsterdam, The Netherlands.Search in Google Scholar
Walker, C., Strassel, S., Medero, J., & Maeda, K. (2006). ACE 2005 multilingual training corpus (LDC2006T06) [Data set]. Linguistic Data Consortium. https://doi.org/10.35111/mwxc-vh88 WalkerC.StrasselS.MederoJ.MaedaK., (2006). ACE 2005 multilingual training corpus (LDC2006T06) [Data set].Linguistic Data Consortium.https://doi.org/10.35111/mwxc-vh88Search in Google Scholar
Wang, X., Wang, Z., Han, X., Jiang, W., Han, R., Liu, Z., Li, J., Li, P., Lin, Y., & Zhou, J. (2020). MAVEN: A massive general domain event detection dataset. arXiv. https://doi.org/10.48550/arXiv.2004.13590WangX.WangZ.HanX.JiangW.HanR.LiuZ.LiJ.LiP.LinY.ZhouJ., (2020). MAVEN: A massive general domain event detection dataset. arXiv. https://doi.org/10.48550/arXiv.2004.13590Search in Google Scholar
Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y., Mirzaei, A., Arunkumar, A., Ashok, A., Dhanasekaran, A. S., Naik, A., Stap, D., Pathak, E., Karamanolakis, G., Lai, H. G., Purohit, I., Mondal, I., Anderson, J., Kuznia, K., Doshi, K., Patel, M., … Khashabi, D. (2022). Super-NaturalInstructions: Generalization via declarative instructions on 1600+ NLP tasks. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Abu Dhabi, United Arab Emirates. https://arxiv.org/abs/2204.07705WangY.MishraS.AlipoormolabashiP.KordiY.MirzaeiA.ArunkumarA.AshokA.DhanasekaranA. S.NaikA.StapD.PathakE.KaramanolakisG.LaiH. G.PurohitI.MondalI.AndersonJ.KuzniaK.DoshiK.PatelM.et al. (2022). Super-NaturalInstructions: Generalization via declarative instructions on 1600+ NLP tasks. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language ProcessingAbu Dhabi, United Arab Emirates.https://arxiv.org/abs/2204.07705Search in Google Scholar
Wu, H., Lei, Q., Zhang, X., & Luo, Z. (2020). Creating a large-scale financial news corpus for relation extraction. In 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD) (pp. 259-263). IEEE. https://doi.org/10.1109/ICAIBD49809.2020.913744WuH.LeiQ.ZhangX.LuoZ., (2020). Creating a large-scale financial news corpus for relation extraction. In 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD) (pp. 259-263). IEEE.https://doi.org/10.1109/ICAIBD49809.2020.9137442Search in Google Scholar
Xi, X., Lv, J., Liu, S., Ye, W., Yang, F., & Wan, G. (2022). MUSIED: A benchmark for event detection from multi-source heterogeneous Informal Texts. arXiv. https://doi.org/10.48550/arXiv.2211.13896XiX.LvJ.LiuS.YeW.YangF.WanG., (2022). MUSIED: A benchmark for event detection from multi-source heterogeneous Informal Texts. arXiv. https://doi.org/10.48550/arXiv.2211.13896Search in Google Scholar
Xu, R., Liu, T., Li, L., & Chang, B. (2021). Document-level event extraction via heterogeneous graph-based interaction model with a tracker. In C. Zong, F. Xia, W. Li, & R. Navigli (EDs), Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) OnlineXuR.LiuT.LiL.ChangB., (2021). Document-level event extraction via heterogeneous graph-based interaction model with a tracker. In ZongC.XiaF.LiW.NavigliR. (EDs), Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) Online.Search in Google Scholar
Yang, H., Chen, Y., Liu, K., Xiao, Y., & Zhao, J. (2018). DCFEE: A document-level Chinese financial event extraction system based on automatically labeled training data. In Proceedings of ACL 2018, System Demonstrations (pp. 50-55).YangH.ChenY.LiuK.XiaoY.ZhaoJ., (2018). DCFEE: A document-level Chinese financial event extraction system based on automatically labeled training data. In Proceedings of ACL 2018, System Demonstrations (pp. 50-55).Search in Google Scholar
Yao, F., Xiao, C., Wang, X., Liu, Z., Hou, L., Tu, C., Li, J., Liu, Y., Shen, W., & Sun, M. (2022). LEVEN: A large-scale Chinese legal event detection dataset. arXiv. https://doi.org/10.48550/arXiv.2203.08556YaoF.XiaoC.WangX.LiuZ.HouL.TuC.LiJ.LiuY.ShenW.SunM., (2022). LEVEN: A large-scale Chinese legal event detection dataset. arXiv. https://doi.org/10.48550/arXiv.2203.08556Search in Google Scholar
Zaman, G., Mahdin, H., Hussain, K., & Rahman, A. (2020). Information extraction from semi-and unstructured data sources: A systematic literature review. ICIC Express Letters, 14(6), 593-603.ZamanG.MahdinH.HussainK.RahmanA., (2020). Information extraction from semi-and unstructured data sources: A systematic literature review.ICIC Express Letters, 14(6), 593-603.Search in Google Scholar
Zheng, S., Cao, W., Xu, W., & Bian, J. (2019). Doc2EDAG: An End-to-End Document-level Framework for Chinese Financial Event Extraction. In K. Inui, J. Jiang, V. Ng, & X. Wan (Eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 337-346). Hong Kong, China. https://doi.org/10.18653/v1/D19-1032ZhengS.CaoW.XuW.BianJ., (2019). Doc2EDAG: An End-to-End Document-level Framework for Chinese Financial Event Extraction. In InuiK.JiangJ.NgV.WanX. (Eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 337-346). Hong Kong, China.https://doi.org/10.18653/v1/D19-1032Search in Google Scholar