This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Naviaux RK. Metabolic features and regulation of the healing cycle—A new model for chronic disease pathogenesis and treatment. Mitochondrion. 2018;46:278–297. doi: 10.1016/j.mito.2018.08.001NaviauxRKMetabolic features and regulation of the healing cycle—A new model for chronic disease pathogenesis and treatmentMitochondrion20184627829710.1016/j.mito.2018.08.001Open DOISearch in Google Scholar
Ballinger SW, Patterson C, Knight-Lozano CA, et al. Mitochondrial Integrity and Function in Atherogenesis. Circulation. 2002;106:544–549. doi: 10.1161/01.cir.0000023921.93743.89BallingerSWPattersonCKnight-LozanoCAMitochondrial Integrity and Function in AtherogenesisCirculation200210654454910.1161/01.cir.0000023921.93743.89Open DOISearch in Google Scholar
Wallace DC. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science. 1992;256:628–632. doi: 10.1126/science.1533953WallaceDCMitochondrial genetics: a paradigm for aging and degenerative diseases?Science199225662863210.1126/science.1533953Open DOISearch in Google Scholar
Yu E, Calvert PA, Mercer JR, et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation. 2013;128:702–712. doi: 10.1161/CIRCULATIONAHA.113.002271YuECalvertPAMercerJRMitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humansCirculation201312870271210.1161/CIRCULATIONAHA.113.002271Open DOISearch in Google Scholar
Zweier JL, Talukder MA. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res. 2006;70(2):181–190. doi: 10.1016/j.cardiores.2006.02.025ZweierJLTalukderMAThe role of oxidants and free radicals in reperfusion injuryCardiovasc Res200670218119010.1016/j.cardiores.2006.02.025Open DOISearch in Google Scholar
Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res. 2000;47(3):446–56. doi: 10.1016/s0008-6363(00)00078-xDhallaNSElmoselhiABHataTMakinoNStatus of myocardial antioxidants in ischemia-reperfusion injuryCardiovasc Res20004734465610.1016/s0008-6363(00)00078-xOpen DOISearch in Google Scholar
Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013;123(1):92–100. doi: 10.1172/JCI62874HausenloyDJYellonDMMyocardial ischemia-reperfusion injury: a neglected therapeutic targetJ Clin Invest201312319210010.1172/JCI62874Open DOISearch in Google Scholar
Piper HM, Garcia-Dorado D, Ovize M. A fresh look at reperfusion injury. Cardiovasc Res. 1998;38(2):291–300. doi: 10.1016/s0008-6363(98)00033-9PiperHMGarcia-DoradoDOvizeMA fresh look at reperfusion injuryCardiovasc Res199838229130010.1016/s0008-6363(98)00033-9Open DOISearch in Google Scholar
Cameron AA, Davis KB, Rogers WJ. Recurrence of angina after coronary artery bypass surgery: predictors and prognosis (CASS Registry). Coronary Artery Surgery Study. J Am Coll Cardiol. 1995 Oct;26(4):895–899. doi: 10.1016/0735-1097(95)00280-4CameronAADavisKBRogersWJRecurrence of angina after coronary artery bypass surgery: predictors and prognosis (CASS Registry). Coronary Artery Surgery StudyJ Am Coll Cardiol1995Oct26489589910.1016/0735-1097(95)00280-4Open DOISearch in Google Scholar
Pocock SJ, Henderson RA, Seed P, et al. Quality of life, employment status, and anginal symptoms after coronary angioplasty or bypass surgery. 3-year follow-up in the Randomized Intervention Treatment of Angina (RITA) Trial. Circulation. 1996;94:135–142. doi: 10.1161/01.cir.94.2.135PocockSJHendersonRASeedPQuality of life, employment status, and anginal symptoms after coronary angioplasty or bypass surgery. 3-year follow-up in the Randomized Intervention Treatment of Angina (RITA) TrialCirculation19969413514210.1161/01.cir.94.2.135Open DOISearch in Google Scholar
Boden WE, O’rourke RA, Teo KK, et al.; COURAGE trial coprincipal investigators and study coordinators. Design and rationale of the Clinical Outcomes Utilizing Revascularization and Aggressive DruG Evaluation (COURAGE trial). Am Heart J. 2006;151:1173–1179. doi: 10.1016/j.ahj.2005.08.015BodenWEO’rourkeRATeoKKCOURAGE trial coprincipal investigators and study coordinatorsDesign and rationale of the Clinical Outcomes Utilizing Revascularization and Aggressive DruG Evaluation (COURAGE trial)Am Heart J20061511173117910.1016/j.ahj.2005.08.015Open DOISearch in Google Scholar
Task Force Members; Montalescot G, Sechtem U, Achenbach S, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949–3003. doi: 10.1093/eurheartj/eht296Task Force MembersMontalescotGSechtemUAchenbachS2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of CardiologyEur Heart J201334382949300310.1093/eurheartj/eht296Open DOISearch in Google Scholar
Lisboa da Silva RMF. Additional and emerging drugs for standard therapy for patients with stable angina. E-Journal of Cardiology Practice. 2017;15(11).Lisboa da SilvaRMFAdditional and emerging drugs for standard therapy for patients with stable anginaE-Journal of Cardiology Practice20171511Search in Google Scholar
Kallistratos MS, Poulimenos LE, Manolis AJ. Stable angina pectoris: which drugs or combinations to use in which patients. E-Journal of Cardiology Practice. 2017;15(8).KallistratosMSPoulimenosLEManolisAJStable angina pectoris: which drugs or combinations to use in which patientsE-Journal of Cardiology Practice2017158Search in Google Scholar
Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res. 2000;86:580–588. doi: 10.1161/01.res.86.5.580KantorPFLucienAKozakRLopaschukGDThe antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolaseCirc Res20008658058810.1161/01.res.86.5.580Open DOISearch in Google Scholar
Di Napoli P, Chierchia S, Taccardi AA, et al. Trimetazidine improves postischemic recovery by preserving endothelial nitric oxide synthase expression in isolated working rat hearts. Nitric Oxide. 2007;16:228–236. doi: 10.1016/j.niox.2006.09.001Di NapoliPChierchiaSTaccardiAATrimetazidine improves postischemic recovery by preserving endothelial nitric oxide synthase expression in isolated working rat heartsNitric Oxide20071622823610.1016/j.niox.2006.09.001Open DOISearch in Google Scholar
Fragasso G, Piatti Md PM, Monti L, et al. Short- and long-term beneficial effects of trimetazidine in patients with diabetes and ischemic cardiomyopathy. Am Heart J. 2003;146(5):E18. doi: 10.1016/S0002-8703(03)00415-0FragassoGPiatti MdPMMontiLShort- and long-term beneficial effects of trimetazidine in patients with diabetes and ischemic cardiomyopathyAm Heart J20031465E1810.1016/S0002-8703(03)00415-0Open DOISearch in Google Scholar