Accès libre

Coronary Angioplasty and Stenting in Acute Coronary Syndromes Using Very Low Contrast Volume and Radiation Dosage Improves Renal and Cardiovascular Outcomes

À propos de cet article

Citez

1. Schoos MM, Sejersten M, Baber U, et al. Outcomes of patients calling emergency medical services for suspected acute cardiovascular disease. Am J Cardiol. 2015;115:13-20. DOI: 10.1016/j.amjcard.2014.09.042.10.1016/j.amjcard.2014.09.042 Search in Google Scholar

2. Chris P Gale. Acute coronary syndrome in adults: scope of the problem in the UK. British Journal of Cardiology. 2017;24:S3-S9. DOI: 10.5837/bjc.2017.s01.10.5837/bjc.2017.s01 Search in Google Scholar

3. Komiyama K, Nakamura M, Tanabe K, et al. In-hospital mortality analysis of Japanese patients with acute coronary syndrome using the Tokyo CCU Network database: Applicability of the GRACE risk score. J Cardiol. 2018;71:251-258. DOI: 10.1016/j.jjcc.2017.09.006.10.1016/j.jjcc.2017.09.006 Search in Google Scholar

4. Martinez-Sanchez C, Borrayo G, Carrillo J, Juarez U, Quintanilla J, Jerjes-Sanchez C; RENASICA III Investigators. Clinical management and hospital outcomes of acute coronary syndrome patients in Mexico: The Third National Registry of Acute Coronary Syndromes (RENASICA III). Arch Cardiol Mex. 2016;86:221-232. DOI: 10.1016/j.acmx.2016.04.007.10.1016/j.acmx.2016.04.007 Search in Google Scholar

5. Kodaira M, Sawano M, Kuno T, et al. Outcomes of acute coronary syndrome patients with concurrent extra-cardiac vascular disease in the era of transradial coronary intervention: A retrospective multicenter cohort study. PLoS One. 2019;14:e0223215. DOI: 10.1371/journal.pone.0223215.10.1371/journal.pone.0223215 Search in Google Scholar

6. Nikolsky E, Pucelikova T, Mehran R, et al. An evaluation of fluoroscopy time and correlation with outcomes after percutaneous coronary intervention. J Invasive Cardiol. 2007;19:208-213. Search in Google Scholar

7. Genereux P, Stone G, Deliargyris E, et al. Duration of PCI procedure and risk of thrombotic and bleeding complications: insights from the CHAMPION PHOENIX trial [abstract]. In: EuroPCR 2016, Book of Abstracts; 2016 May 17-20; Paris, France: Europa Organisation; 2016. Euro16A-OP0756. Search in Google Scholar

8. Asada S, Sakakura K, Taniguchi Y, et al. Association of the long fluoroscopy time with factors in contemporary primary percutaneous coronary interventions. PLoS One. 2020;15:e0237362. DOI: 10.1371/journal.pone.0237362.10.1371/journal.pone.0237362 Search in Google Scholar

9. Ramsdale DR, Aziz S, Newall N, Palmer N, Jackson M. Bacteremia following complex percutaneous coronary intervention. J Invasive Cardiol. 2004;16:632-634. Search in Google Scholar

10. Samore MH, Wessolossky MA, Lewis SM, Shubrooks SJ Jr, Karchmer AW. Frequency, risk factors, and outcome for bacteremia after percutaneous transluminal coronary angioplasty. Am J Cardiol. 1997;79:873-877. DOI: 10.1016/ s0002-9149(97)00006-4.10.1016/S0002-9149(97)00006-4 Search in Google Scholar

11. Gori T, Münzel T. Biological effects of low-dose radiation: of harm and hormesis. Eur Heart J. 2012;33:292-295. DOI: 10.1093/eurheartj/ehr288.10.1093/eurheartj/ehr28821862465 Search in Google Scholar

12. Wei KC, Lin HY, Hung SK, et al. Leukemia Risk After Cardiac Fluoroscopic Interventions Stratified by Procedure Number, Exposure Latent Time, and Sex: A Nationwide Population-Based Case-Control Study. Medicine (Baltimore). 2016;95:e2953. DOI: 10.1097/MD.0000000000002953.10.1097/MD.0000000000002953499887626962795 Search in Google Scholar

13. Sacha J, Gierlotka M, Feusette P, Dudek D. Ultra-low contrast coronary angiography and zero-contrast percutaneous coronary intervention for prevention of contrast-induced nephropathy: step-by-step approach and review. Postepy Kardiol Interwencyjnej. 2019;15:127-136. DOI: 10.5114/ aic.2019.86007.10.5114/aic.2019.86007672723031497044 Search in Google Scholar

14. Azzalini L, Laricchia A, Regazzoli D, et al. Ultra-Low Contrast Percutaneous Coronary Intervention to Minimize the Risk for Contrast-Induced Acute Kidney Injury in Patients With Severe Chronic Kidney Disease. J Invasive Cardiol. 2019;31:176-182. Search in Google Scholar

15. Rozenbaum Z, Benchetrit S, Rozenbaum E, Neumark E, Mosseri M, Pereg D. Ultra-Low Contrast Volume for Patients with Advanced Chronic Kidney Disease Undergoing Coronary Procedures. Nephron. 2018;138:296-302. DOI: 10.1159/000485648.10.1159/00048564829393219 Search in Google Scholar

16. Harding SA, Mowjood T, Fairley S. Ultra-Low Contrast Percutaneous Coronary Intervention Guided by Optical Coherence Tomography Complicated by Coronary Perforation. JACC Case Rep. 2020;2:2429-2431. DOI: 10.1016/j. jaccas.2020.09.029.10.1016/j.jaccas.2020.09.029 Search in Google Scholar

17. Arokiaraj MC. Emergency coronary angioplasty with stenting using Cordis® diagnostic coronary catheters when there is difficulty in engaging guide catheters and bench evaluation of diagnostic and guide catheters. Rev Port Cardiol (Engl Ed). 2018;37:117-125. DOI: 10.1016/j.repc.2017.04.007.10.1016/j.repc.2017.04.00729426798 Search in Google Scholar

18. Kobayashi T, Hirshfeld JW Jr. Radiation Exposure in Cardiac Catheterization: Operator Behavior Matters. Circ Cardiovasc Interv. 2017;10:e005689. DOI: 10.1161/ CIRCINTERVENTIONS.117.005689.10.1161/CIRCINTERVENTIONS.117.00568928801543 Search in Google Scholar

19. Kaul P, Medvedev S, Hohmann SF, Douglas PS, Peterson ED, Patel MR. Ionizing radiation exposure to patients admitted with acute myocardial infarction in the United States. Circulation. 2010;122:2160-2169. DOI: 10.1161/CIRCULATIONAHA.110.973339.10.1161/CIRCULATIONAHA.110.97333921060076 Search in Google Scholar

20. Kuon E. Radiation exposure in invasive cardiology. Heart. 2008;94:667-674. DOI: 10.1136/hrt.2007.125021.10.1136/hrt.2007.12502118411362 Search in Google Scholar

21. Picano E, Vano E. The Radiation Issue in Cardiology: the time for action is now. Cardiovasc Ultrasound. 2011;9:35. DOI: 10.1186/1476-7120-9-35.10.1186/1476-7120-9-35325610122104562 Search in Google Scholar

22. Hong CS, Chen ZC, Tang KT, Chang WT. The Effectiveness and Safety between Monoplane and Biplane Imaging During Coronary Angiographies. Acta Cardiol Sin. 2020;36:105-110. DOI: 10.6515/ACS.202003_36(2).20190820A. Search in Google Scholar

23. Leistner DM, Schlender LS, Steiner J, et al. A randomised comparison of monoplane versus biplane fluoroscopy in patients undergoing percutaneous coronary intervention: the RAMBO trial. EuroIntervention. 2020;16:672-679. DOI: 10.4244/EIJ-D-20-00217.10.4244/EIJ-D-20-0021732392169 Search in Google Scholar

24. Williams MC, Stewart C, Weir NW, Newby DE. Using radiation safely in cardiology: what imagers need to know. Heart. 2019;105:798-806. DOI: 10.1136/heartjnl-2017-312493.10.1136/heartjnl-2017-312493658073230777934 Search in Google Scholar

25. Farman MT, Khan NU, Sial JA, Saghir T, Rizvi SN, Zaman KS. Comparison of fluoroscopy time during coronary angiography and interventions by radial and femoral routes – can we decrease the fluoroscopy time with increased experience? An observational study. Anadolu Kardiyol Derg. 2011;11:607-612. DOI: 10.5152/akd.2011.163.10.5152/akd.2011.16321959874 Search in Google Scholar

26. Barbosa RR, Bortot CF, Serpa RG, et al. Comparison of Fluoroscopy Time During Coronary Angiography by Radial and Femoral Routes. Rev Bras Cardiol Invasiva. 2014;22:343-348. DOI: 10.1590/0104-1843000000057.10.1590/0104-1843000000057 Search in Google Scholar

27. Puymirat E, Cayla G, Simon T, et al. Multivessel PCI Guided by FFR or Angiography for Myocardial Infarction. N Engl J Med. 2021;385:297-308. DOI: 10.1056/NEJMoa2104650.10.1056/NEJMoa210465033999545 Search in Google Scholar

28. Megaly M, Pershad A, Glogoza M, et al. Use of Intravascular Imaging in Patients With ST-Segment Elevation Acute Myocardial Infarction. Cardiovasc Revasc Med. 202;30:59-64. DOI: 10.1016/j.carrev.2020.09.032.10.1016/j.carrev.2020.09.03233032963 Search in Google Scholar

29. Crowhurst JA, Whitby M, Savage M, et al. Factors contributing to radiation dose for patients and operators during diagnostic cardiac angiography. J Med Radiat Sci. 2019;66:20-29. DOI: 10.1002/jmrs.315.10.1002/jmrs.315639918930488575 Search in Google Scholar

30. Mann H, Ward JH, Samlowski WE. Vascular leak syndrome associated with interleukin-2: chest radiographic manifestations. Radiology. 1990;176:191-194. DOI: 10.1148/ radiology.176.1.2353090.10.1148/radiology.176.1.23530902353090 Search in Google Scholar

31. Gaynor ER, Vitek L, Sticklin L, et al. The hemodynamic effects of treatment with interleukin-2 and lymphokine-activated killer cells. Ann Intern Med. 1988;109:953-958. DOI: 10.7326/0003-4819-109-12-953.10.7326/0003-4819-109-12-9533264128 Search in Google Scholar

32. Ndrepepa G, Kastrati A. Activated clotting time during percutaneous coronary intervention: a test for all seasons or a mind tranquilizer? Circ Cardiovasc Interv. 2015;8:e002576. DOI: 10.1161/CIRCINTERVENTIONS.115.002576.10.1161/CIRCINTERVENTIONS.115.00257625873733 Search in Google Scholar

33. Le May M, Wells G, So D, et al. Safety and Efficacy of Femoral Access vs Radial Access in ST-Segment Elevation Myocardial Infarction: The SAFARI-STEMI Randomized Clinical Trial. JAMA Cardiol. 2020;5:126-134. DOI: 10.1001/ jamacardio.2019.4852.10.1001/jamacardio.2019.4852699093131895439 Search in Google Scholar

34. Vranckx P, Frigoli E, Rothenbühler M, et al. Radial versus femoral access in patients with acute coronary syndromes with or without ST-segment elevation. Eur Heart J. 2017;38:1069-1080. DOI: 10.1093/eurheartj/ehx048.10.1093/eurheartj/ehx04828329389 Search in Google Scholar

35. Sandoval Y, Bell M, Gulati R. Transradial Artery Access Complications. Circ Cardiovasc Interv. 2019;12:e007386. DOI:10.1161/Circinterventions.119.007386.10.1161/CIRCINTERVENTIONS.119.00738631672030 Search in Google Scholar

36. Arokiaraj MC. Angioplasty with Stenting in Acute Coronary Syndromes with Very Low Contrast Volume Using 6F Diagnostic Catheters and Bench Testing of Catheters. Open Access Maced J Med Sci. 2019;7:1004-1012. DOI: 10.3889/ oamjms.2019.238.10.3889/oamjms.2019.238645417030976350 Search in Google Scholar

37. Konttila K, Koivula K, Eskola M, et al. Poor long-term outcome in acute coronary syndrome in a real-life setting: Ten-year outcome of the TACOS study. Cardiology Journal. 2021;28:302-311. DOI: 10.5603/cj.a2019.0037.10.5603/CJ.a2019.0037807895630994181 Search in Google Scholar

38. Khatri P, Kasner SE. Ischemic Strokes After Cardiac Catheterization: Opportune Thrombolysis Candidates? Arch Neurol. 2006;63:817-821. DOI: 10.1001/archneur.63.6.817.10.1001/archneur.63.6.81716769862 Search in Google Scholar

39. Cuinet J, Garbagnati A, Rusca M, et al. Cardiogenic shock elicits acute inflammation, delayed eosinophilia, and depletion of immune cells in most severe cases. Sci Rep. 2020;10:7639. DOI: 10.1038/s41598-020-64702-0.10.1038/s41598-020-64702-0720315732377009 Search in Google Scholar

40. Shpektor A. Cardiogenic shock: The role of inflammation. Acute Cardiac Care. 2010;12:115-118. DOI: 10.3109/17482941.2010.523705.10.3109/17482941.2010.52370521039083 Search in Google Scholar

41. Chandrasekhar J, Baber U, Sartori S, et al. Effect of Increasing Stent Length on 3-Year Clinical Outcomes in Women Undergoing Percutaneous Coronary Intervention With New-Generation Drug-Eluting Stents. JACC Cardiovasc Interv. 2018;11:53-65. DOI: 10.1016/j.jcin.2017.11.020.10.1016/j.jcin.2017.11.02029301648 Search in Google Scholar

42. Claessen BE, Smits PC, Kereiakes DJ, et al. Impact of lesion length and vessel size on clinical outcomes after percutaneous coronary intervention with everolimus- versus paclitaxeleluting stents pooled analysis from the SPIRIT (Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System) and COMPARE (Second-generation everolimuseluting and paclitaxel-eluting stents in real-life practice) Randomized Trials. JACC Cardiovasc Interv. 2011;4:1209-1215. DOI: 10.1016/j.jcin.2011.07.016.10.1016/j.jcin.2011.07.01622115661 Search in Google Scholar

43. Tamez H, Pinto D, Kirtane A, et al. Effect of Short Procedural Duration With Bivalirudin on Increased Risk of Acute Stent Thrombosis in Patients With STEMI. JAMA Cardiol. 2017;2:673-677. DOI: 10.1001/jamacardio.2016.5669.10.1001/jamacardio.2016.5669581502428249084 Search in Google Scholar

44. Moukarbel GV, Dakik HA. Diffuse coronary artery spasm induced by guidewire insertion. The Journal of Invasive Cardiology. 2003;15:353-354. Search in Google Scholar

45. Yunus I, Fasih A, Wang Y. The use of procalcitonin in the determination of severity of sepsis, patient outcomes and infection characteristics. PLOS ONE. 2018;13:e0206527. Doi: 10.1371/journal.pone.0206527.10.1371/journal.pone.0206527623529330427887 Search in Google Scholar

46. Bataille V, Ferrières J, Danchin N, et al. Increased mortality risk in diabetic patients discharged from hospital with insulin therapy after an acute myocardial infarction: Data from the FAST-MI 2005 registry. Eur Heart J Acute Cardiovasc Care. 2019;8:218-230. doi: 10.1177/2048872617719639.10.1177/204887261771963928691497 Search in Google Scholar

47. Jiang YJ, Han WX, Gao C, et al. Comparison of clinical outcomes after drug-eluting stent implantation in diabetic versus nondiabetic patients in China: A retrospective study. Medicine (Baltimore). 2017;96:e6647. Doi:10.1097/ MD.000000000000664710.1097/MD.0000000000006647541323028445265 Search in Google Scholar

48. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2017;39:119-177. doi: 10.1093/eurheartj/ehx393.10.1093/eurheartj/ehx393 Search in Google Scholar

49. Bangalore S, Makani H, Radford M, et al. Clinical Outcomes with β-Blockers for Myocardial Infarction: A Meta-analysis of Randomized Trials. Am J Med. 2014;127:939-953. doi: 10.1016/j.amjmed.2014.05.032.10.1016/j.amjmed.2014.05.032 Search in Google Scholar

50. Harari R, Bangalore S. Beta-blockers after acute myocardial infarction: an old drug in urgent need of new evidence. Eur Heart J. 2020;41:3530-3532. https://doi.org/10.1093/eurheartj/ehaa436.10.1093/eurheartj/ehaa436 Search in Google Scholar

51. Heart Outcomes Prevention Evaluation Study Investigators, Yusuf S, Sleight P, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342:145-153. doi: 10.1056/ NEJM200001203420301.10.1056/NEJM200001203420301 Search in Google Scholar

52. Young J, Dunlap M, Pfeffer M, et al. Mortality and Morbidity Reduction with Candesartan in Patients With Chronic Heart Failure and Left Ventricular Systolic Dysfunction. Circulation. 2004;110:2618-2626. doi: 10.1161/01.CIR.0000146819.43235. A9.10.1161/01.CIR.0000146819.43235.A9 Search in Google Scholar

53. Pfeffer MA, McMurray JJ, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med. 2003;349:1893-1906. doi: 10.1056/NEJMoa032292.10.1056/NEJMoa032292 Search in Google Scholar

54. Evans M, Carrero J, Szummer K, et al. Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers in Myocardial Infarction Patients with Renal Dysfunction. J Am Coll Cardiol. 2016;67:1687-1697. doi: 10.1016/j. jacc.2016.01.050.10.1016/j.jacc.2016.01.050 Search in Google Scholar

55. Sim HW, Zheng H, Richards AM, et al. Beta-blockers and reninangiotensin system inhibitors in acute myocardial infarction managed with in-hospital coronary revascularization. Sci Rep. 2020;10:15184. doi: 10.1038/s41598-020-72232-y.10.1038/s41598-020-72232-y Search in Google Scholar

56. Olszanecka A, Reczek Ł, Schönborn M, et al. Stosowanie leków przeciwbólowych u pacjentów z chorobą niedokrwienną serca. Folia Cardiologica. 2018;13:283-288.10.5603/FC.2018.0065 Search in Google Scholar

57. Bentivoglio L, Leo L, Wolf N, Meister S. Frequency and importance of unprovoked coronary spasm in patients with angina pectoris undergoing percutaneous transluminal coronary angioplasty. Am J Cardiol. 1983;51:1067-1071. doi: 10.1016/0002-9149(83)90346-6.10.1016/0002-9149(83)90346-6 Search in Google Scholar

58. Wong A, Cheng A, Chan C, Lim YL. Cardiogenic shock caused by severe coronary artery spasm immediately after coronary stenting. Tex Heart Inst J. 2005;32:78–80. Search in Google Scholar

59. Quintavalle C, Brenca M, De Micco F, et al. In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis. Cell Death Dis. 2011;2:e155. doi: 10.1038/ cddis.2011.38.10.1038/cddis.2011.38312211721562587 Search in Google Scholar

60. Husi H, Human C. Molecular determinants of acute kidney injury. J Inj Violence Res. 2015;7:75-86. doi:10.5249/jivr. v7i2.61510.5249/jivr Search in Google Scholar

61. Stocker TJ, Abdel-Wahab M, Möllmann H, Deseive S, Massberg S, Hausleiter J. Trends and predictors of radiation exposure in percutaneous coronary intervention: the PROTECTION VIII study. EuroIntervention. 2022:EIJ-D-21-00856. doi: 10.4244/ EIJ-D-21-00856. Search in Google Scholar

eISSN:
2457-5518
Langue:
Anglais