Accès libre

Thermal properties of historical Hungarian masonry bricks

 et   
21 déc. 2024
À propos de cet article

Citez
Télécharger la couverture

D. Badik-Sza ó, “A Proposal for Utilization of aults as Floor-slab Structures in Contemporary Architecture,” YBL J. Built Environ., vol. 9, no. 1, pp. 141–151, Jun. 2024, doi: 10.2478/JBE-2024-0014. Search in Google Scholar

P. Kronavetter, “A magyarországi téglagyárak építészeti öröksége,” 2023, Accessed: Jul. 11, 2024. [Online]. Available: https://www.kozep.bme.hu/storage/uploads/99dbc3fc-359a-4db2- 90d7-0bdbc4949614/1691-kronavetter_p_ertekezes.pdf. Search in Google Scholar

J. Sýkora, M. Šejnoha, and J. Šejnoha, “Homogenization of coupled heat and moisture transport in masonry structures including interfaces,” Appl. Math. Comput., vol. 219, no. 13, pp. 7275–7285, Mar. 2013, doi: 10.1016/J.AMC.2011.02.050. Search in Google Scholar

K. Abahri, R. Belarbi, and A. Trabelsi, “Contribution to analytical and numerical study of combined heat and moisture transfers in porous building materials,” Build. Environ., vol. 46, no. 7, pp. 1354–1360, Jul. 2011, doi: 10.1016/J.BUILDENV.2010.12.020. Search in Google Scholar

J. Sýkora, J. Vorel, T. Krejčí, M. Šejnoha, and Šejnoha, “Analysis of coupled heat and moisture transfer in masonry structures0,” Mater. Struct., vol. 42, no. 8, pp. 1153–1167, 2009. Search in Google Scholar

P. Pihelo, M. Lelumees, and T. Kalamees, “Influence of Moisture Dry-out on Hygrothermal Performance of Prefabricated Modular Renovation Elements,” Energy Procedia, vol. 96, pp. 745–755, Sep. 2016, doi: 10.1016/J.EGYPRO.2016.09.137. Search in Google Scholar

M. Ibrahim, E. Wurtz, P. H. Biwole, P. Achard, and H. Sallee, “Hygrothermal performance of exterior walls covered with aerogel-based insulating rendering,” Energy Build., vol. 84, pp. 241–251, Dec. 2014, doi: 10.1016/J.ENBUILD.2014.07.039. Search in Google Scholar

T. Colinart, D. Lelievre, and P. Glouannec, “Experimental and numerical analysis of the transient hygrothermal behavior of multilayered hemp concrete wall,” Energy Build., vol. 112, pp. 1–11, Jan. 2016, doi: 10.1016/J.ENBUILD.2015.11.027. Search in Google Scholar

R. McClung, H. Ge, J. Straube, and J. Wang, “Hygrothermal performance of cross-laminated timber wall assemblies with built-in moisture: field measurements and simulations,” Build. Environ., vol. 71, pp. 95–110, Jan. 2014, doi: 10.1016/J.BUILDENV.2013.09.008. Search in Google Scholar

P. Pihelo, H. Kikkas, and T. Kalamees, “Hygrothermal Performance of Highly Insulated Timber-frame External Wall,” Energy Procedia, vol. 96, pp. 685–695, Sep. 2016, doi: 10.1016/J.EGYPRO.2016.09.128. Search in Google Scholar

G. G. Akkurt et al., “Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions,” Renew. Sustain. Energy Rev., vol. 118, p. 109509, Feb. 2020, doi: 10.1016/J.RSER.2019.109509. Search in Google Scholar

Z. Palík, T. Kulovaná. J. Žumnár, M. Pavlíková, and R. Černý, “Experimental analysis of material properties of historical ceramic bricks and their potential current replacements,” Struct. Stud. Repairs Maint. Herit. Archit. XIV, vol. 1, pp. 327–335, Jul. 2015, doi: 10.2495/STR150271. Search in Google Scholar

Y. Aït Oumeziane, A. Pierre, F. El Mankibi, V. Lepiller, M. Gasnier, and P. Désévaux, “Hygrothermal properties of an early 20th century clay brick from eastern France: Experimental characterization and numerical modelling,” Constr. Build. Mater., vol. 273, p. 121763, Mar. 2021, doi: 10.1016/J.CONBUILDMAT.2020.121763. Search in Google Scholar

E. Çam and E. Uğurlu Sağin, “Characteristics and Production Technologies of Byzantine Building Bricks from the Anaia Church in Western Anatolia,” Clays Clay Miner., vol. 71, no. 4, pp. 397–415, Aug. 2023, doi: 10.1007/S42860-023-00247-3/TABLES/9. Search in Google Scholar

MS EN ISO 12570:2000, “Hygrothermal performance of building materials and products. Determination of moisture content by drying at elevated temperature (ISO 12570:2000),” Hungarian Stand. Inst., 2000. Search in Google Scholar

MS EN 15026:2023, “Hygrothermal performance of building components and building elements. Assessment of moisture transfer by numerical simulation,” Hungarian Stand. Inst., 2023. Search in Google Scholar

MS EN ISO 10 56:2008, “Building materials and products. Hygrothermal properties. Tabulated design values and procedures for determining declared and design thermal values (ISO 10 56:2007),” Hungarian Stand. Inst., 2008. Search in Google Scholar

Fraunhofer IBP, “WUFI PRO 6.6 [computer program].” Accessed: Oct. 24, 2022. [Online]. Available: https://wufi.de/en/2022/06/29/release-wufi-pro-6-6-and-wufi-2d-4-4/. Search in Google Scholar

MS EN ISO 10211:2017, “Thermal bridges in building construction. Heat flows and surface temperatures. Detailed calculations (ISO 10211:2017),” Hungarian Stand. Inst., 2017. Search in Google Scholar

DIN 4108-2:2013-02, “Thermal protection and energy economy in buildings - Part 2: Minimum requirements to thermal insulation,” Ger. Stand. Inst., 2013. Search in Google Scholar