À propos de cet article

Citez

R. Ramm, M. Heinze, P. Kühmstedt, A. Christoph, S. Heist, G. Notni, Portable solution for high-resolution 3D and colour texture on-site digitization of cultural heritage objects, Journal of Cultural Heritage, vol. 53, pp. 165–175, Elsevier (2022). DOI 10.1016/j.culher.2021.11.006 Open DOISearch in Google Scholar

J. Perez-Cerrolaza, J. Abella, L. Kosmidis, A.J. Calderon, F.J. Cazorla, J.L. Flores, GPU Devices for Safety-Critical Systems: A Survey, ACM Computing Surveys (CSUR), pp. 1–35, New York, NY, USA (2022). DOI 10.1145/3549526 Open DOISearch in Google Scholar

N. Li, C.P. Ho, J. Xue, L.W. Lim, G. Chen, Y.H. Fu, L.Y.T. Lee, A Progress Review on Solid-State LiDAR and Nanophotonics-Based LiDAR Sensors, Laser & Photonics Reviews, vol. 16, 2100511, pp. 1–24, Wiley-VCH GmbH, Weinheim (2022). DOI 10.1002/lpor.202100511 Open DOISearch in Google Scholar

B. Wang, J. Lan, J. Gao, LiDAR Filtering in 3D Object Detection Based on Improved RANSAC, Remote Sensing, Computational Intelligence in Remote Sensing, vol. 14, no. 9, 2110, pp. 1–18 (2022). DOI 10.3390/rs14092110 Open DOISearch in Google Scholar

Y. Li, Z. Ge, G. Yu, J. Yang, Z. Wang, Y. Shi, J. Sun, Z. Li, BEVDepth: Acquisition of reliable depth for multi-view 3d object detection, pp. 1–12 (2022). arXiv preprint arXiv:2206.10092 Search in Google Scholar

M. Pandey, M. Fernandez, F. Gentile, O. Isayev, A. Tropsha, A.C. Stern, A. Cherkasov, The transformational role of GPU computing and deep learning in drug discovery, Nature Machine Intelligence, vol. 4, no. 3, pp. 211–221 (2022). DOI 10.1038/s42256-022-00463-x Open DOISearch in Google Scholar

L. You, H. Jiang, J. Hu, C.H. Chang, L. Chen, X. Cui, M. Zhao, GPU-accelerated Faster Mean Shift with euclidean distance metrics, In: IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 211–216 (2022). DOI 10.1109/COMPSAC54236.2022.00037 Open DOISearch in Google Scholar

V. Tadic, A. Toth, Z. Vizvari, M. Klincsik, Z. Sari, P. Sarcevic, J. Sarosi, I. Biro, Perspectives of RealSense and ZED Depth Sensors for Robotic Vision Applications, Machines, vol. 10, no. 3, 183, pp. 1–16 (2022). DOI 10.3390/machines10030183 Open DOISearch in Google Scholar

S. Cerfoglio, C. Ferraris, L. Vismara, G. Amprimo, L. Priano, G. Pettiti, M. Galli, A. Mauro, V. Cimolin, Kinect-Based Assessment of Lower Limbs during Gait in Post-Stroke Hemiplegic Patients: A Narrative Review, Sensors, vol. 22, no. 13, 4910, pp. 1–15 (2022). DOI 10.3390/s22134910926978135808426 Open DOISearch in Google Scholar

Z. Qiu, J. Martínez-Sánchez, V.M. Brea, P. López, P. Arias, Low-cost mobile mapping system solution for traffic sign segmentation using Azure Kinect, International Journal of Applied Earth Observation and Geoinformation, vol. 112, 102895, pp. 1–11 (2022). DOI 10.1016/j.jag.2022.102895 Open DOISearch in Google Scholar

X. Xu, L. Zhang, J. Yang, C. Cao, W. Wang, Y. Ran, Z. Tan, M. Luo, A Review of Multi-Sensor Fusion SLAM Systems Based on 3D LiDAR, Remote Sensing, vol. 14, no. 12, 2835, pp. 1–27 (2022). DOI 10.3390/rs14122835 Open DOISearch in Google Scholar

S. Zahia, B. Garcia-Zapirain, J. Anakabe, J. Ander, O. Jossa Bastidas, A. Loizate Totoricagüena, A Comparative Study between Scanning Devices for 3D Printing of Personalized Ostomy Patches, Sensors, vol. 22, no. 2, 560, pp. 1–20 (2022). DOI 10.3390/s22020560878018235062521 Open DOISearch in Google Scholar

S. Tavani, A. Billi, A. Corradetti, M. Mercuri, A. Bosman, M. Cuffaro, T. Seers, E. Carminati, Smartphone assisted fieldwork: Towards the digital transition of geoscience fieldwork using LiDAR-equipped iPhones, Earth-Science Reviews, vol. 227, 103969, pp. 1–15 (2022). DOI 10.1016/j.earscirev.2022.103969 Open DOISearch in Google Scholar

P. Chemweno, R.J. Torn, Innovative safety zoning for collaborative robots utilizing Kinect and LiDAR sensory approaches, Procedia CIRP, vol. 106, pp. 209–214 (2022). DOI 10.1016/j.procir.2022.02.180 Open DOISearch in Google Scholar

H.S. Tham, R. Hussin, R.C. Ismail, A Real-Time Distance Prediction via Deep Learning and Microsoft Kinect, In: IOP Conference Series: Earth and Environmental Science, vol. 1064, pp. 1–6 (2022). DOI 10.1088/1755-1315/1064/1/012048 Open DOISearch in Google Scholar

M. Vogt, A. Rips, C. Emmelmann, Comparison of iPad Pro®’s LiDAR and TrueDepth Capabilities with an Industrial 3D Scanning Solution, Technologies, vol. 9, no. 2, 25, pp. 1–13 (2021). DOI 10.3390/technologies9020025 Open DOISearch in Google Scholar

B. Chen, S. Shi, J. Sun, W. Gong, J. Yang, L. Du, K. Guo, B. Wang, B. Chen, Hyperspectral Li-DAR point cloud segmentation based on geometric and spectral information, OPTICS EXPRESS, vol. 27, no. 17, pp. 24043–24059 (2019) Search in Google Scholar

T. Staffas, M. Brunzell, S. Gyger, L. Schweickert, S. Steinhauer, V. Zwiller, 3D scanning quantum LiDAR, In: 2022 Conference on Lasers and Electro-Optics (CLEO), pp. 1–2 (2022). DOI 10.1364/CLEO_AT.2022.AM2K.1 Open DOISearch in Google Scholar

F. Di Stefano, S. Chiappini, A. Gorreja, M. Balestra, R. Pierdicca, Mobile 3D scan Li-DAR: a literature review, Geomatics, Natural Hazards and Risk, vol. 12, no. 1, pp. 2387–2429, Taylor & Francis (2021). DOI 10.1080/19475705.2021.1964617 Open DOISearch in Google Scholar

A. Notchenko, V. Ishimtsev, A. Artemov, V. Selyutin, E. Bogomolov, E. Burnaev, Scan2Part: Fine-grained and Hierarchical Part-level Understanding of Real-World 3D Scans, In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, vol 5, pp. 711–722 (2022). DOI 10.5220/0010848200003124 Open DOISearch in Google Scholar

Y. Li, T. Harada, Non-rigid Point Cloud Registration with Neural Deformation Pyramid, pp. 1–19 (2022). arXiv preprint arXiv:2205.12796 Search in Google Scholar

P. Besl, H.D. McKay, A method for registration of 3-D shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence vol. 14, pp. 239–256 (1992). DOI 10.1109/34.121791 Open DOISearch in Google Scholar

S. Gold, A. Rangarajan, C. Lu, S. Pappu, E. Mjolsness, New algorithms for 2D and 3D point matching: pose estimation and correspondence, Pattern Recognition, vol. 31, no. 8, pp. 1019–1031 (1998). DOI 10.1016/S0031-3203(98)80010-1. Open DOISearch in Google Scholar

Intel Corporation. Intel RealSense Product Overview. Retrieved October 30, 2022, from https://www.intelrealsense.com/ Search in Google Scholar

Intel Corporation. Learn About the Intel® RealSenseTM SDK 2.0. Retrieved October 30, 2022, from https://www.intelrealsense.com/intel-realsense-sdk-2-0/ Search in Google Scholar

Intel Corporation. Intel® RealSenseTM LiDAR Camera L515. Retrieved October 30, 2022, from https://www.intelrealsense.com/LiDAR-camera-l515/ Search in Google Scholar

Intel Corporation. Multi-Camera configurations with the Intel® RealSenseTM LiDAR Camera L515. Retrieved October 30, 2022, from https://dev.intelrealsense.com/docs/LiDAR-camera-l515-multi-camera-setup Search in Google Scholar

H. Sarmadi, R. Muñoz-Salinas, M.A. Berbís, A. Luna, R. Medina-Carnicer, Joint scene and object tracking for cost-effective augmented reality assisted patient positioning in radiation therapy, pp. 1–16 (2020). arXiv preprint arXiv:2010.01895. Search in Google Scholar

The Gnomon Workshop. 3D scan and retopology for production. Retrieved October 30, 2022, from https://www.thegnomonworkshop.com/tutorials/3d-scan-and-retopology-for-production Search in Google Scholar

ScanLab photogrammetry. 3D scanning service. Retrieved October 30, 2022, from https://scanlab.ca/services/3d-scanning/ Search in Google Scholar

Scan Engine. Studio. Retrieved October 30, 2022, from https://www.scan-engine.fr/ Search in Google Scholar

Shining 3D. 3D Digitizing Solutions. Product models. Retrieved October 30, 2022, from https://www.shining3d.com/3d-digitizing-solutions/ Search in Google Scholar

Artec 3D. Artec Leo 3D scanner. Retrieved October 30, 2022, from https://www.artec3d.com/portable-3d-scanners/artec-leo Search in Google Scholar

Peel 3D. Peel 3 3D scanner. Retrieved October 30, 2022, from https://peel-3d.com/products/peel-3/ Search in Google Scholar

Calibry. Skaner 3D Calibry. Retrieved October 30, 2022, from https://calibry.pl/ Search in Google Scholar

A. Kulikajevas, Reconstruction algorithm of invisible sides of a 3D object for depth scanning systems, Doctoral dissertation (2022), Kauno technologijos Universitetas, KTU, Lithuania Search in Google Scholar

L. Downs, A. Francis, N. Koenig, B. Kinman, R. Hickman, K. Reymann, T.B. McHugh, V. Vanhoucke, Google Scanned Objects: A High-Quality Dataset of 3D Scanned Household Items, pp. 1–8 (2022). arXiv preprint arXiv:2204.11918 Search in Google Scholar

Google Research. Scanned Objects by Google Research: A Dataset of 3D-Scanned Common Household Items. Retrieved October 31, 2022, from https://ai.googleblog.com/2022/06/scanned-objects-by-google-research.html Search in Google Scholar

Amazon. Amazon Berkeley Objects (ABO) Dataset. Retrieved October 31, 2022, from https://amazon-berkeley-objects.s3.amazonaws.com/index.html#home Search in Google Scholar

J. Collins, S. Goel, K. Deng, A. Luthra, L. Xu, E. Gundogdu, T.F.Y. Vicente, T. Dideriksen, H. Arora, M. Guillaumin, J. Malik, ABO: Dataset and benchmarks for real-world 3d object understanding, In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21126-21136 (2021). DOI 10.1109/CVPR52688.2022.02045 Open DOISearch in Google Scholar

Meta. Common Objects in 3D: Large-Scale Learning and Evaluation of Real-life 3D Category Reconstruction. Retrieved October 31, 2022, from https://ai.facebook.com/datasets/CO3D-dataset/ Search in Google Scholar

J. Reizenstein, R. Shapovalov, P. Henzler, L. Sbordone, P. Labatut, D. Novotny, Common objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction, In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10901–10911 (2021). DOI 10.1109/ICCV48922.2021.01072 Open DOISearch in Google Scholar

Alibaba. Our Businesses. Retrieved October 31, 2022, from https://www.alibabagroup.com/en-US/about-alibaba-businesses Search in Google Scholar

H. Fu, R. Jia, L. Gao, M. Gong, B. Zhao, S. Maybank, D. Tao, 3d-future: 3D furniture shape with texture, International Journal of Computer Vision, vol. 129, no. 12, pp. 3313–3337 (2021). DOI 10.1007/s11263-021-01534-z Open DOISearch in Google Scholar

XRPro LLC (Structure). Structure Sensor Pro. Retrieved October 31, 2022, from https://structure.io/ Search in Google Scholar

Kaggle Inc. Datasets. Retrieved October 31, 2022, from https://www.kaggle.com/datasets Search in Google Scholar

F.J. Romero-Ramirez, R. Muñoz-Salinas, R. Medina-Carnicer, Speeded up detection of squared fiducial markers, Image and Vision Computing, 76, pp. 38—47 (2018). DOI 10.1016/j.imavis.2018.05.004 Open DOISearch in Google Scholar

Multi-Camera configurations with the Intel® RealSenseTM LiDAR Camera L515. Retrieved October 31, 2022 from https://dev.intelrealsense.com/docs/LiDAR-camera-l515-multi-camera-setup Search in Google Scholar

V. Kraevoy, A. Sheffer, Template-Based Mesh Completion, Eurographics Symposium on Geometry Processing (2005). DOI 10.2312/SGP/SGP05/013-022 Open DOISearch in Google Scholar

J. Huang, T. Birdal, Z. Gojcic, L. Guibas, S. Hu, Multiway Non-rigid Point Cloud Registration via Learned Functional Map Synchronization, In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–18 (2022). DOI 10.1109/TPAMI.2022.316465335380953 Open DOISearch in Google Scholar

Y. Li, T. Harada, Lepard: Learning partial point cloud matching in rigid and deformable scenes, pp. 1–17 (2021). DOI 10.48550/ARXIV.2111.12591 Open DOISearch in Google Scholar

F. Poux, R. Billen, Voxel-based 3D point cloud semantic segmentation: unsupervised geometric and relationship featuring vs. deep learning methods, ISPRS International Journal of Geo-Information, vol. 8, no. 5, 213, pp. 1–34 (2019). DOI 10.3390/ijgi8050213 Open DOISearch in Google Scholar

eISSN:
2449-6499
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Computer Sciences, Databases and Data Mining, Artificial Intelligence