1. bookVolume 11 (2021): Edition 3 (July 2021)
Détails du magazine
License
Format
Magazine
eISSN
2449-6499
Première parution
30 Dec 2014
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Learning Novelty Detection Outside a Class of Random Curves with Application to COVID-19 Growth

Publié en ligne: 29 May 2021
Volume & Edition: Volume 11 (2021) - Edition 3 (July 2021)
Pages: 195 - 215
Reçu: 06 Sep 2020
Accepté: 21 Mar 2021
Détails du magazine
License
Format
Magazine
eISSN
2449-6499
Première parution
30 Dec 2014
Périodicité
4 fois par an
Langues
Anglais

[1] C. Abraham, G. Biau, and B. Cadre, On the kernel rule for function classification, Annals of the Institute of Statistical Mathematics, 58(May 2005): 619–633, 2006.10.1007/s10463-006-0032-1 Search in Google Scholar

[2] TW. Anderson, The Statistical Analysis of Time Series, Wiley Online Library, 1971. Search in Google Scholar

[3] G. Aneiros, E. Bongiorno, R. Cao, P. Vieu, et al, Functional statistics and related fields. Springer, Cham 2017.10.1007/978-3-319-55846-2 Search in Google Scholar

[4] G. Biau, F. Bunea, and M. Wegkamp, Functional classification in hilbert spaces. IEEE Transactions on Information Theory, 51(6): 2163–2172, 2005.10.1109/TIT.2005.847705 Search in Google Scholar

[5] P. Bickel and K. Doksum, Mathematical statistics: basic ideas and selected topics, volume I, volume 117. CRC Press,Boca Raton 2015.10.1201/b19822 Search in Google Scholar

[6] W. Bock, B. Adamik, M. Bawiec, V. Bezborodov, M. Bodych, J. Burgard, T. Goetz, T. Krueger, A. Migalska, B.a Pabjan, T. Ożański, E. Rafajłowicz, W. Rafajłowicz, E. Skubalska-Rafajłowicz, S. Ryfczyńska, E. Szczureki, and P. Szymański, Mitigation and herd immunity strategy for COVID-19 is likely to fail, medRxiv, 2020.10.1101/2020.03.25.20043109 Search in Google Scholar

[7] V. Britanak, P. Yip, and K. Rao, Discrete cosine and sine transforms: general properties, fast algorithms and integer approximations, Elsevier, Oxford, 2010. Search in Google Scholar

[8] D. Clifton, S. Hugueny, and L. Tarassenko, A comparison of approaches to multivariate extreme value theory for novelty detection, In: IEEE Workshop on Statistical Signal Processing Proceedings, pages 13–16, 2009.10.1109/SSP.2009.5278652 Search in Google Scholar

[9] A. Cuevas, A partial overview of the theory of statistics with functional data, Journal of Statistical Planning and Inference, 147: 1–23, 2014.10.1016/j.jspi.2013.04.002 Search in Google Scholar

[10] A. Cuevas, M. Febrero, and R. Fraiman, Robust estimation and classification for functional data via projection-based depth notions, Computational Statistics, 22(3): 481–496, 2007.10.1007/s00180-007-0053-0 Search in Google Scholar

[11] L. Devroye, L. Gyorfi, and G. Lugosi, A probabilistic theory of pattern recognition, volume 31. Springer Science & Business Media, New York 2013. Search in Google Scholar

[12] L. Devroye and G. Lugosi, Almost sure classification of densities, Journal of Nonparametric Statistics, 14(6): 675–698, 2002.10.1080/10485250215323 Search in Google Scholar

[13] P. Duda, K. Przybyszewski, and L. Wang, A novel drift detection algorithm based on features’ importance analysis in a data streams environment, Journal of Artificial Intelligence and Soft Computing Research, 10(4): 287–298, 2020.10.2478/jaiscr-2020-0019 Search in Google Scholar

[14] P. Duda, L. Rutkowski, M. Jaworski, and D. Rutkowska, On the parzen kernel-based probability density function learning procedures over time-varying streaming data with applications to pattern classification, IEEE Transactions on Cybernetics, 50(4), 2018.10.1109/TCYB.2018.2877611 Search in Google Scholar

[15] P. Duda, L. Rutkowski, M. Jaworski, and D. Rutkowska, On the Parzen Kernel-Based Probability Density Function Learning Procedures Over Time-Varying Streaming Data With Applications to Pattern Classification, IEEE Trans. on Cybernetics, 50(4): 1683–1696, 2020.10.1109/TCYB.2018.2877611 Search in Google Scholar

[16] A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant, A general lower bound on the number of examples needed for learning, Information and Computation, 82: 247–261, 1989.10.1016/0890-5401(89)90002-3 Search in Google Scholar

[17] F. Ferraty and P. Vieu, Nonparametric functional data analysis: theory and practice, Springer Science & Business Media, New York 2006. Search in Google Scholar

[18] Ralph Foorthuis, On the nature and types of anomalies: A review, arXiv preprint arXiv: 2007.15634, 2020. Search in Google Scholar

[19] European Centre for Disease Prevention and Control, Data on the geographic distribution of covid-19 cases worldwide. Search in Google Scholar

[20] P. Galeano, J. Esdras, and R. Lillo, The mahalanobis distance for functional data with applications to classification, Technometrics, 57(2): 281–291, 2015.10.1080/00401706.2014.902774 Search in Google Scholar

[21] T. Gałkowski, A. Krzyżak, and Z. Filutowicz, A new approach to detection of changes in multidimensional patterns, Journal of Artificial Intelligence and Soft Computing Research, 10(2):125–136, 2020.10.2478/jaiscr-2020-0009 Search in Google Scholar

[22] T. Galkowski and L. Rutkowski, Nonparametric Fitting of Multivariate Functions, IEEE Transactions on Automatic Control, 31(8): 785–787, 1986.10.1109/TAC.1986.1104399 Search in Google Scholar

[23] F. Gouin, C. Ancourt, and C. Guettier, Three-wise: A local variance algorithm for GPU, Proceedings - 19th IEEE International Conference on Computational Science and Engineering, 14th IEEE International Conference on Embedded and Ubiquitous Computing and 15th International Symposium on Distributed Computing and Applications to Business, Engineering and Science, CSE-EUC-DCABES 2016, pages 257–262, 2017.10.1109/CSE-EUC-DCABES.2016.194 Search in Google Scholar

[24] W. Greblicki, Pattern recognition procedures with nonparametric density estimates, IEEE Transactions on Systems, Man and Cybernetics, 8: 809–812, 1978.10.1109/TSMC.1978.4309869 Search in Google Scholar

[25] W. Greblicki and M. Pawlak, Classification using the Fourier series estimate of multivariate density functions, IEEE Transactions on Systems, Man and Cybernetics, 11: 726–730, 1981.10.1109/TSMC.1981.4308594 Search in Google Scholar

[26] W. Greblicki and M. Pawlak, Fourier and {H}ermite series estimates of regression functions, Ann. Inst. Stat. Math., 37: 443–454, 1985.10.1007/BF02481112 Search in Google Scholar

[27] L. Gyorfi, M. Kohler, A. Krzyzak, and H. Walk, A Distribution-Free Theory of Nonparametric Regression, Springer, New York, 2002.10.1007/b97848 Search in Google Scholar

[28] T. Harris, D. Tucker, B. Li, and L. Shand, Elastic depths for detecting shape anomalies in functional data, Technometrics, pages 1–11, 2020.10.1080/00401706.2020.1811156 Search in Google Scholar

[29] D. Haussler, M. Kearns, H Sebastian Seung, and N. Tishby, Rigorous learning curve bounds from statistical mechanics, Machine Learning, 25(2-3): 195–236, 1996.10.1007/BF00114010 Search in Google Scholar

[30] W. Homenda, A. Jastrzębska, W. Pedrycz, and F. Yu, Combining classifiers for foreign pattern rejection, Journal of Artificial Intelligence and Soft Computing Research, 10(2): 75–94, 2020.10.2478/jaiscr-2020-0006 Search in Google Scholar

[31] L. Horváth and P. Kokoszka, Inference for functional data with applications, volume 200, Springer Science & Business Media, 2012.10.1007/978-1-4614-3655-3 Search in Google Scholar

[32] J. Jurečková and J. Kalina, Nonparametric multivariate rank tests and their unbiasedness, Bernoulli, 18(1): 229–251, 2012.10.3150/10-BEJ326 Search in Google Scholar

[33] W C M Kallenberg, T Ledwina, and E Rafajlowicz, Testing bivariate independence and normality, Sankhya: The Indian Journal of Statistics, Series A, 59(1): 42–59, 1997. Search in Google Scholar

[34] M. Kemmler, E. Rodner, E. Wacker, and J. Denzler, One-class classification with Gaussian processes, Pattern Recognition, 46(12): 3507–3518, 2013.10.1016/j.patcog.2013.06.005 Search in Google Scholar

[35] J. T. Kwok, I. W. Tsang, and J. M Zurada, A class of single-class minimax probability machines for novelty detection, IEEE Transactions on Neural Networks, 18(3): 778–785, 2007.10.1109/TNN.2007.89119117526343 Search in Google Scholar

[36] N. Ling and P. Vieu, Nonparametric modelling for functional data: selected survey and tracks for future, Statistics, 52(4): 934–949, 2018.10.1080/02331888.2018.1487120 Search in Google Scholar

[37] M. Markou and S. Singh, Novelty detection: A review - Part 2:: Neural network based approaches, Signal Processing, 83(12): 2499–2521, 2003.10.1016/j.sigpro.2003.07.019 Search in Google Scholar

[38] M. Markou and S. Singh, Novelty detection: a review—part 1: statistical approaches, Signal Processing, 83(12): 2481–2497, 2003.10.1016/j.sigpro.2003.07.018 Search in Google Scholar

[39] J. Marron, J. Ramsay, L. Sangalli, and A. Srivastava, Functional data analysis of amplitude and phase variation, Statistical Science, 30(4): 468–484, 2015.10.1214/15-STS524 Search in Google Scholar

[40] J. S. Marron, J. Ramsay, L. Sangalli, and A. Srivastava, Functional data analysis of amplitude and phase variation, Statistical Science, 30(4): 468–484, 2015.10.1214/15-STS524 Search in Google Scholar

[41] D. Montgomery, Introduction to statistical quality control, John Wiley & Sons New York, 2009. Search in Google Scholar

[42] H-G Mueller et al, Peter Hall, functional data analysis and random objects, The Annals of Statistics, 44(5): 1867–1887, 2016.10.1214/16-AOS1492 Search in Google Scholar

[43] K. Patan, M. Witczak, and J. Korbicz, Towards robustness in neural network based fault diagnosis, International Journal of Applied Mathematics and Computer Science, 18(4): 443–454, 2008.10.2478/v10006-008-0039-2 Search in Google Scholar

[44] S. Perera and J. Liu, Complexity reduction, self/completely recursive, radix-2 dct i/iv algorithms, Journal of Computational and Applied Mathematics, 379: 112936, 2020.10.1016/j.cam.2020.112936 Search in Google Scholar

[45] E. Rafajłowicz and Schwabe R, Halton and Hammersley sequences in multivariate nonparametric regression, Statistics and Probability Letters, 76(8): 803–812, 2006.10.1016/j.spl.2005.10.014 Search in Google Scholar

[46] E. Rafajłowicz and R. Schwabe, Equidistributed designs in nonparametric regression, Statistica Sinica, 13(1), 2003. Search in Google Scholar

[47] E. Rafajłowicz and E. Skubalska-Rafajłowicz, FFT in calculating nonparametric regression estimate based on trigonometric series, Journal of Applied Mathematics and Computer and Computer Science, 3(4): 713–720, 1993. Search in Google Scholar

[48] E. Rafajłowicz and A. Steland, A binary control chart to detect small jumps, Statistics, 43(3): 295–311, 2009.10.1080/02331880802379405 Search in Google Scholar

[49] E. Rafajłowicz and A. Steland, The Hotelling—Like T2 Control Chart Modified for Detecting Changes in Images having the Matrix Normal Distribution, In Springer Proceedings in Mathematics and Statistics, volume 294, pages 193–206, 2019.10.1007/978-3-030-28665-1_14 Search in Google Scholar

[50] E. Rafajłowicz, Nonparametric orthogonal series estimators of regression: a class attaining the optimal convergence rate in L2, Statistics and Probability Letters, 5: 219–224, 1987.10.1016/0167-7152(87)90044-7 Search in Google Scholar

[51] J. Ramsay and B. Silverman, Applied functional data analysis: methods and case studies, Springer, 2007. Search in Google Scholar

[52] D. Rutkowska and L. Rutkowski, On the Hermite series-based generalized regression neural networks for stream data mining, In: International Conference on Neural Information Processing, pages 437–448. Springer, 2019.10.1007/978-3-030-36718-3_37 Search in Google Scholar

[53] L. Rutkowski, A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification, IEEE Transactions on Circuits and Systems, 33(8): 812–818, 1986.10.1109/TCS.1986.1086001 Search in Google Scholar

[54] L. Rutkowski, M. Jaworski, and P. Duda, Stream data mining: algorithms and their probabilistic properties, Springer, Cham, 2020.10.1007/978-3-030-13962-9 Search in Google Scholar

[55] L. Rutkowski and E. Rafajłowicz, On optimal global rate of convergence of some nonparametric identification procedures, IEEE Trans. Automatic Control, AC-34: 1089–1091, 1989.10.1109/9.35283 Search in Google Scholar

[56] S. Sameer and M. Markou, An approach to novelty detection applied to the classification of image regions, IEEE Transactions on Knowledge and Data Engineering, 16(4): 396–407, 2004.10.1109/TKDE.2004.1269665 Search in Google Scholar

[57] R. Serfling. Approximation theorems of mathematical statistics, volume 162. John Wiley & Sons, New York 2009. Search in Google Scholar

[58] E. Skubalska-Rafajłowicz, One-dimensional Kohonen’s Lvq nets for multidimensional patterns recognition, International Journal of Applied Mathematics and Computer Science, 10(4): 767–778, 2000. Search in Google Scholar

[59] E. Skubalska-Rafajlowicz, Pattern recognition algorithms based on space-filling curves and orthogonal expansions, IEEE Transactions on Information Theory, 47(5): 1915–1927, 2001.10.1109/18.930927 Search in Google Scholar

[60] E. Skubalska-Rafajłowicz, Random projection RBF nets for multidimensional density estimation, International Journal of Applied Mathematics and Computer Science, 18(4): 455–464, 2008.10.2478/v10006-008-0040-9 Search in Google Scholar

[61] E. Skubalska-Rafajlowicz and A. Krzyzak, Fast k-NN classification rule using metric on space-filling curves, In Proceedings of 13th International Conference on Pattern Recognition, volume 2, pages 121–125. IEEE, 1996.10.1109/ICPR.1996.546736 Search in Google Scholar

[62] A. Srivastava and E. Klassen, Functional and shape data analysis, volume 1, Springer, Cham, 2016.10.1007/978-1-4939-4020-2_1 Search in Google Scholar

[63] A. Srivastava, E. Klassen, S. Joshi, and I. Jermyn, Shape Analysis of Elastic Curves in Euclidean Spaces, IEEE Journal on Selected Areas in Communications, 10(2): 391–400, 1992. Search in Google Scholar

[64] A. Srivastava, E. Klassen, S. Joshi, and I. Jermyn, Shape analysis of elastic curves in Euclidean spaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7): 1415–1428, 2010.10.1109/TPAMI.2010.18420921581 Search in Google Scholar

[65] A. Steland and R. von Sachs, Asymptotics for high-dimensional covariance matrices and quadratic forms with applications to the trace functional and shrinkage, Stochastic Process. Appl., 128(8): 2816–2855, 2018.10.1016/j.spa.2017.10.007 Search in Google Scholar

[66] L. Tarassenko, A. Nairac, N. Townsend, I. Buxton, and P. Cowley, Novelty detection for the identification of abnormalities, International Journal of Systems Science, 31(11): 1427–1439, 2000.10.1080/00207720050197802 Search in Google Scholar

[67] B. Trawiński, M. Smętek, Z. Telec, and T. Lasota, Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms, International Journal of Applied Mathematics and Computer Science, 22(4): 867–881, 2012.10.2478/v10006-012-0064-z Search in Google Scholar

[68] M. Vidyasagar, A theory of learning and generalization, Springer-Verlag, Berlin, 2002. Search in Google Scholar

[69] G. Vinue and I. Epifanio, Robust archetypoids for anomaly detection in big functional data, Advances in Data Analysis and Classification, pages 1–26, 2020.10.1007/s11634-020-00412-9 Search in Google Scholar

[70] J. Wang, J. Chiou, and H-G Mueller, Review of Functional Data Analysis, pages 1–41, 2015.10.1146/annurev-statistics-041715-033624 Search in Google Scholar

[71] W. Xie, O. Chkrebtii, and S. Kurtek, Visualization and Outlier Detection for Multivariate Elastic Curve Data, IEEE Transactions on Visualization and Computer Graphics, 26(11): 3353–3364, 2020.10.1109/TVCG.2019.2921541758978631180861 Search in Google Scholar

[72] Y. Yang and T. Mathew, The simultaneous assessment of normality and homoscedasticity in one-way random effects models, Statistics and Applications (ISSN 2452-7395(online)), 18(2): 97–119, 2020. Search in Google Scholar

[73] M. Yao and H. Wang, One-Class Support Vector Machine for Functional Data Novelty Detection, In 2012 Third Global Congress on Intelligent Systems, pages 172–175. IEEE, 2012.10.1109/GCIS.2012.19 Search in Google Scholar

[74] M. Yao and H. Wang, One-class support vector machine for functional data novelty detection, In: Proceedings - 2012 3rd Global Congress on Intelligent Systems, GCIS 2012, number 1, pages 172–175. IEEE, 2012.10.1109/GCIS.2012.19 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo