1. bookVolume 10 (2020): Edition 4 (October 2020)
Détails du magazine
License
Format
Magazine
eISSN
2449-6499
Première parution
30 Dec 2014
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Data-Driven Temporal-Spatial Model for the Prediction of AQI in Nanjing

Publié en ligne: 15 Jun 2020
Volume & Edition: Volume 10 (2020) - Edition 4 (October 2020)
Pages: 255 - 270
Reçu: 18 Mar 2020
Accepté: 05 May 2020
Détails du magazine
License
Format
Magazine
eISSN
2449-6499
Première parution
30 Dec 2014
Périodicité
4 fois par an
Langues
Anglais

[1] W. N Deng, PM10 pollution forecast based on BP Neural Network and MATLAB implementation in Xi’an City, Xi’an university of science and technology, 2008.Search in Google Scholar

[2] W. Sun, H. Zhang, P. Ahmet et al., Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in northern California, Science of the Total Environment, 443, 2013, 93-103.10.1016/j.scitotenv.2012.10.070Search in Google Scholar

[3] J. Kukkonen, M. Pohjola, R. S. Sokhi et al., Analysis and evaluation of selected local-scale PM10 air pollution episodes in four European cities: Helsinki, London, Milan and Oslo, Atmospheric environment, 39, 2004, 2759-2773.10.1016/j.atmosenv.2004.09.090Search in Google Scholar

[4] Y. Zheng, F. Liu and H. P. Hsieh, U-Air: when urban air quality inference meets big data, ACM SIGKDD international conference on knowledge discovery and data mining, 2013, 1436-1444.10.1145/2487575.2488188Search in Google Scholar

[5] Z. Cheng, S. Wang, J. Jiang et al., Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China, Environmental pollution, 182, 2013, 101-110.10.1016/j.envpol.2013.06.043Search in Google Scholar

[6] N. H. Hanafi, M. H. Hassim, and Z. Z. Noor, Overview of Health Impacts due to Haze Pollution in Johor, Malaysia, Journal of Engineering and Technological Sciences, 50, 2018, 818-831.10.5614/j.eng.technol.sci.2018.50.6.5Search in Google Scholar

[7] Y. Bian, Z. Huang, J. Ou et al., Evolution of anthropogenic air pollutant emissions in Guangdong Province, China, from 2006 to 2015, Atmospheric Chemistry and Physics, 19, 2019, 11701-11719.10.5194/acp-19-11701-2019Search in Google Scholar

[8] A. R. Deacon, R. G. Derwent, R. M. Harrison et al., Analysis and interpretation of measurements of suspended particulate matter at urban background sites in the United Kingdom, Science of the total environment, 203, 1997, 17–36.10.1016/S0048-9697(97)00130-7Search in Google Scholar

[9] R. M. Harrison and A. R. Deacon, Spatial correlation of automatic air quality monitoring at urban background sites: implications for network design, Environmental technology, 19, 1998, 121-132.10.1080/09593331908616664Search in Google Scholar

[10] G. Grivas, A. Chaloulakou, C. Samara et al., Spatial and temporal variation of PM10 mass concentrations within the greater area of Athens, Greece, Water air and soil pollution, 158, 2004, 357-371.10.1023/B:WATE.0000044859.84066.09Search in Google Scholar

[11] J. Kukkonen, M. Pohjola, R. S. Sokhi et al., Analysis and evaluation of selected local-scale PM10 air pollution episodes in four European cities: Helsinki, London, Milan and Oslo, Atmospheric environment, 39, 2004, 2759-2773.10.1016/j.atmosenv.2004.09.090Search in Google Scholar

[12] X. Querol, A. Alastuey, C. R. Ruiz et al., Speciation and origin of PM10 and PM2.5 in selected European cities, Atmospheric environment, 38, 2004, 6547-6555.10.1016/j.atmosenv.2004.08.037Search in Google Scholar

[13] M. Statheropoulos, N. Vassiliadis and A. Pappa, Principal component and canonical correlation analysis for examining air pollution and meteorological data, Atmospheric environment, 32, 1998, 1087-1095.10.1016/S1352-2310(97)00377-4Search in Google Scholar

[14] M. Viana, X. Querol, A. Alastuey et al., PM levels in the Basque Country (Northern Spain): analysis of a 5-year data record and interpretation of seasonal variations, Atmospheric environment, 37, 2003, 2879-2891.10.1016/S1352-2310(03)00292-9Search in Google Scholar

[15] S. W. Jia, X. L. Liu and G. Yan, The dynamic analysis of a vehicle pollutant emission reduction management model under economic means, Clean Technologies and Environmental Policy, 21, 2019, 243-256.10.1007/s10098-018-1631-2Search in Google Scholar

[16] X. N. Yue, Z. J. Meng and Z. H. Yuan, Multiple regression analysis on causes of urban fog-haze in China-based on data mining, The 27th Chinese Control and Decision Conference (2015 CCDC), 2015, 4408-4413.10.1109/CCDC.2015.7162651Search in Google Scholar

[17] W. Q. Huang, H. B. Fan and Y. Qian, Modeling and efficient quantified risk assessment of haze causation system in China related to vehicle emissions with uncertainty consideration, Science of the total environment, 668, 2019, 74-83.10.1016/j.scitotenv.2019.03.01930852228Search in Google Scholar

[18] Y. Luo, T. Mengfan, Y. Kun et al., Research on PM2.5 estimation and prediction method and changing characteristics analysis under long temporal and large spatial scale-A case study in China typical regions, Science of the Total Environment, 696, 2019, 133983.10.1016/j.scitotenv.2019.13398331461697Search in Google Scholar

[19] W. Zhuang, J. Fan, Y. Gao et al., Study on prediction model of space-time distribution of air pollutants based on artificial neural network, Environmental Engineering & Management Journal (EEMJ), 18, 2019.10.30638/eemj.2019.148Search in Google Scholar

[20] X. T. Li and X. D. Zhang, Predicting ground-level PM2.5 concentrations in the Beijing-Tianjin-Hebei region: A hybrid remote sensing and machine learning approach, Environmental pollution, 249, 2019, 735-749.10.1016/j.envpol.2019.03.06830933771Search in Google Scholar

[21] B. B. Zhou, J. Du, I. Gultepe et al., Forecast of low visibility and fog from NCEP: current status and efforts, Pure and applied geophysics, 169, 2012, 895-909.10.1007/s00024-011-0327-xSearch in Google Scholar

[22] Y. Miao, R. Potts, X. Huang et al., A fuzzy logic fog forecasting model for Perth Airport, Pure and applied geophysics, 169, 2012, 1107-1119.10.1007/s00024-011-0351-xSearch in Google Scholar

[23] W. Q. Wang and Y. Guo, Air pollution PM2.5 data analysis in Los Angeles long beach with seasonal ARIMA model, 2009 international conference on energy and environment technology, 3, 2009, 7-10.10.1109/ICEET.2009.468Search in Google Scholar

[24] W. G. Cobourn, An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations, Atmospheric Environment, 44, 2010, 3015-3023.10.1016/j.atmosenv.2010.05.009Search in Google Scholar

[25] H. L. Yu and C. H. Wang, Retrospective prediction of intraurban spatiotemporal distribution of PM2.5 in Taipei, Atmospheric Environment, 44, 2010, 3053-3065.10.1016/j.atmosenv.2010.04.030Search in Google Scholar

[26] W. Sun, H. Zhang, P. Ahmet et al., Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in northern California, Science of the Total Environment, 443, 2013, 93-103.10.1016/j.scitotenv.2012.10.07023178893Search in Google Scholar

[27] L. L. Jiang, Y. H. Zhang, G. X. Song et al., A time series analysis of outdoor air pollution and preterm birth in Shanghai, China, Biomedical and Environmental Sciences, 20, 2007, 426.Search in Google Scholar

[28] A. Charbel, C. Carine, B. Agnes et al., SO2 in Beirut: air quality implication and effects of local emissions and long-range transport, Air Quality Atmosphere and Health, 1, 2008, 167-178.10.1007/s11869-008-0022-ySearch in Google Scholar

[29] D. Kang, R. Mathur and S. T. Rao, Real-time bias-adjusted O3 and PM2.5 air quality index forecasts and their performance evaluations over the continental United States, Atmospheric Environment, 44, 2010, 2203-2212.10.1016/j.atmosenv.2010.03.017Search in Google Scholar

[30] H. Li, S. You, H. Zhang et al., Modelling of AQI related to building space heating energy demand based on big data analytics, Applied Energy, 203, 2017, 57-71.10.1016/j.apenergy.2017.06.002Search in Google Scholar

[31] L. D. Monache, T. Nipen, X. X. Deng et al., Ozone ensemble forecasts: 2. A Kalman filter predictor bias correction, Journal of geophysical research-atmospheres, 111, 2006, D05308.10.1029/2005JD006311Search in Google Scholar

[32] S. McKeen, J. Wilczak, G. Grell et al., Assessment of an ensemble of seven real-time ozone forecasts over eastern north America during the summer of 2004, Journal of Geophysical Research: Atmospheres, 110, 2005, D21307.10.1029/2005JD005858Search in Google Scholar

[33] L. Delle Monache, J. Wilczak, S. Mckeen et al., A Kalman-filter bias correction method applied to deterministic, ensemble averaged and probabilistic forecasts of surface ozone, Tellus Series b-chemical and physical meteorology, 60, 2008, 238-249.10.1111/j.1600-0889.2007.00332.xSearch in Google Scholar

[34] J. Wilczak, S. McKeen, I. Djalalova et al., Bias-corrected ensemble and probabilistic forecasts of surface ozone over eastern North America during the summer of 2004, Journal of geophysical research-atmospheres, 111, 2006, D23S28.10.1029/2006JD007598Search in Google Scholar

[35] D. W. Kang, R. Mathur, S. T. Rao et al., Bias adjustment techniques for improving ozone air quality forecasts, Journal of geophysical research-atmospheres, 113, 2008, D23308.10.1029/2008JD010151Search in Google Scholar

[36] Y. Z. Xu, X. M. Fan, Z. Q. Zhang et al., Trade liberalization and haze pollution: Evidence from china, Ecological Indicators, 109, 2020, 105825.10.1016/j.ecolind.2019.105825Search in Google Scholar

[37] P. Z. Li, Y. Wang and Q. L. Dong, The analysis and application of a new hybrid pollutants forecasting model using modified Kolmogorov–Zurbenko filter, Science of The Total Environment, 583, 2017, 228-240.10.1016/j.scitotenv.2017.01.05728108092Search in Google Scholar

[38] X. Liu, Q. Liu, Y. Zou et al., A LSTM-Based Approach to Haze Prediction Using a Self-organizing Single Hidden Layer Scheme, International Conference on Security with Intelligent Computing and Big-data Services, 2018, 701-706.10.1007/978-3-030-16946-6_57Search in Google Scholar

[39] K. M. K. K. Yusof, A. Azid, M. S. A. Sani et al., The evaluation on artificial neural networks (ANN) and multiple linear regressions (MLR) models over particulate matter (PM10) variability during haze and non-haze episodes: A decade case study, Malaysian Journal of Fundamental and Applied Sciences, 15, 2019, 164-172.10.11113/mjfas.v15n2.1004Search in Google Scholar

[40] J. Z. Levin, A rational parametric approach to latitude, longitude and altitude, Navigation, 35, 1988, 361–370.10.1002/j.2161-4296.1988.tb00964.xSearch in Google Scholar

[41] H. Mahmoud and N. Akkari, Shortest path calculation: a comparative study for location-based recommender system, 2016 world symposium on computer applications & research (WSCAR), 2016, 1-5.10.1109/WSCAR.2016.16Search in Google Scholar

[42] https://aqicn.org/city/nanjing/cn/Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo