1. bookVolume 3 (2013): Edition 4 (October 2013)
Détails du magazine
License
Format
Magazine
eISSN
2449-6499
Première parution
30 Dec 2014
Périodicité
4 fois par an
Langues
Anglais
Accès libre

A Survey of old and New Results for the Test Error Estimation of a Classifier

Publié en ligne: 30 Dec 2014
Volume & Edition: Volume 3 (2013) - Edition 4 (October 2013)
Pages: 229 - 242
Détails du magazine
License
Format
Magazine
eISSN
2449-6499
Première parution
30 Dec 2014
Périodicité
4 fois par an
Langues
Anglais

[1] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.10.1201/9781420050646.ptb6Search in Google Scholar

[2] C. Cortes, V. Vapnik, “Support-Vector Networks”, Machine Learning, Vol. 20, 1995, pp. 273-297.10.1007/BF00994018Search in Google Scholar

[3] L. Roberge, S. B. Long, D. B. Burnham, “Data Warehouses and Data Mining tools for the legal profession: using information technology to raise the standard of practice”, Syracuse Law Review, vol. 52, 2002, pp. 1281-1292.Search in Google Scholar

[4] P. Bartlett, S. Boucheron, G. Lugosi, “Model Selection and Error Estimation”, Machine Learning, Vol. 48, 2002, pp. 85-113.10.1023/A:1013999503812Search in Google Scholar

[5] L. Devroye, L. Gyorfi, G. Lugosi, A Probabilistic Theory of Pattern Recognition, Springer Verlag, 1996.10.1007/978-1-4612-0711-5Search in Google Scholar

[6] V.N. Vapnik, A.Y. Chervonenkis, “On the uniform convergence of relative frequencies of events to their probabilities”, Theory of Probability and its Applications, Vol. 16, 1971, pp. 264-280.10.1137/1116025Search in Google Scholar

[7] O. Gascuel, G. Caraux, “Distribution-free performance bounds with the resubstitution error estimate”, Pattern Recognition Letters, Vol. 13, 1992, pp. 757-764.10.1016/0167-8655(92)90125-JSearch in Google Scholar

[8] K. Duan, S. S. Keerthy, A. Poo, “Evaluation of simple performance measures for tuning SVM parameters”, Neurocomputing, vol. 51, 2003, pp. 41-59.10.1016/S0925-2312(02)00601-XSearch in Google Scholar

[9] D. Anguita, A. Boni, S. Ridella, F. Rivieccio, D. Sterpi, “Theoretical and practical model selection methods for Support Vector classifiers”, In: “Support Vector Machines: Theory and Applications”, L. Wang, Springer, 2005.10.1007/10984697_7Search in Google Scholar

[10] D. Anguita, A. Ghio, S. Ridella, “Maximal Discrepancy for Support Vector Machines”, Neurocomputing, vol. 74, 2011, pp. 1436-1443.10.1016/j.neucom.2010.12.009Search in Google Scholar

[11] C.J.C. Burges, “A tutorial on Support Vector Machines for classification”, Data Mining and Knowledge Discovery, vol. 2, 1998, pp. 121-167.10.1023/A:1009715923555Search in Google Scholar

[12] C.W. Su, C.C. Chang, C.J. Lin, “A practical guide to Support Vector classification”, Technical report, Dept. of Computer Science, National Taiwan University, 2003.Search in Google Scholar

[13] D. Anguita, L. Ghelardoni, A. Ghio, S. Ridella, “Test error bounds for classifiers: A survey of old and new results”, In: Proc. of the 2011 IEEE Symposium on Foundations of Computational Intelligence (FOCI), Paris, France, 2011, pp. 80-87.10.1109/FOCI.2011.5949469Search in Google Scholar

[14] D. Anguita, A. Ghio, S. Ridella, D. Sterpi, “K- Fold Cross Validation for Error Rate Estimate in Support Vector Machines”, In: Proc. of the Int. Conf. on Data Mining (DMIN’09), 2009, pp. 291-297.Search in Google Scholar

[15] M. Anthony, S. B. Holden, “Cross-Validation for binary classification by real-valued functions: theoretical analysis”, In: Proc. of the 11th Conf. on Computational Learning Theory, 1998, pp. 218-229.10.1145/279943.279987Search in Google Scholar

[16] V. Vapnik, The Nature of Statistical Learning Theory, Springer Verlag, 2000.10.1007/978-1-4757-3264-1Search in Google Scholar

[17] J.C. Platt, “Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods”, Advances in Large Margin Classifiers, 1999, pp. 61-74.Search in Google Scholar

[18] P. Bartlett, A. Tewari, “Sparseness vs Estimating Conditional Probabilities: Some Asymptotic Results”, Journal of Machine Learning Research, Vol. 8, 2007, pp. 775-790.Search in Google Scholar

[19] L.D. Brown, T.T. Cai, A. DasGupta, “Interval estimation for a binomial proportion”, Statistical Science, Vol. 16, 2001, pp. 101-133.10.1214/ss/1009213286Search in Google Scholar

[20] E.B. Wilson, “Probable inference, the law of succession, and statistical inference”, Journal of the American Statistical Association, Vol. 22, 1927, pp. 209-212.10.1080/01621459.1927.10502953Search in Google Scholar

[21] C.J. Clopper, E.S. Pearson, “The use of confidence intervals for fiducial limits illustrated in the case of the binomial”, Biometrika, Vol. 26, 1934, pp. 404-413.10.1093/biomet/26.4.404Search in Google Scholar

[22] J. Langford, “Tutorial on practical prediction theory for classification”, Journal of Machine Learning Research, Vol. 6, 2005, pp. 273-306.Search in Google Scholar

[23] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed., McGraw-Hill, 1991.Search in Google Scholar

[24] L. Guttman, “A distribution-free confidence interval for the mean”, The Annals of Mathematical Statistics, Vol. 19, 1948, pp. 410-413.10.1214/aoms/1177730207Search in Google Scholar

[25] S.N. Bernstein, Sobranie sochinenie, Tom IV. Teoriya veroyatnostei, Matematicheskaya statistika (1911-1946) (Collected works, Vol. IV. The theory of probability, Mathematical statistics (1911-1946)), Izdat. Nauka, 1964.Search in Google Scholar

[26] J.Y. Audibert, R. Munos, C. Szepesvari, “Exploration-exploitation trade-off using variance estimates in multi-armed bandits”, Theoretical Computer Science, Vol. 410, 2009, pp. 1876-1902.10.1016/j.tcs.2009.01.016Search in Google Scholar

[27] A. Maurer, M. Pontil, “Empirical Bernstein Bounds and Sample Variance Penalization”, In: Proc. of the Int. Conference on Learning Theory (COLT), 2009.Search in Google Scholar

[28] Y. Mansour, D. McAllester, ”Generalization Bounds for Decision Trees”, In: Proc. of the Thirteenth Annual Conference on Computational Learning Theory, 2000, pp. 69-74.Search in Google Scholar

[29] W. Hoeffding, “Probability inequality for sum of bounded random variables”, Journal of the American Statistical Association, Vol. 58, 1963, pp. 13-30.10.1080/01621459.1963.10500830Search in Google Scholar

[30] V. Bentkus, “An Inequality for Large Deviation Probabilities of Sums of Bounded i.i.d. Random Variables”, Lithuanian Mathematical Journal, Vol. 41, 2001, pp. 112-119.Search in Google Scholar

[31] V. Bentkus, “On Hoeffdings inequalities”, Annals of Probability, Vol. 32, 2004, pp. 1650-1673.10.1214/009117904000000360Search in Google Scholar

[32] A. Blum, A. Kalai, J. Langford, “Beating the HoldOut: Bounds for Kfold and Progressive CrossValidation”, Proc. of the Conference on Computational Learning Theory, 1999, pp. 203-208. 10.1145/307400.307439Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo