À propos de cet article

Citez

Alboni S, Cervia D, Sugama S and Conti B. (2010). Interleukin 18 in the CNS. J Neuroinfl ammation 7: 9-19.Search in Google Scholar

Brummelte S, Lieblich SE and Galea LAM. (2012). Gestational and postpartum corticosterone exposure to the dam aff ects behavioral and endocrine outcome of the off spring in a sexually-dimorphic manner. Neuropharmacol 62: 406-418.Search in Google Scholar

Brunk UT and Terman A. (2002). The mitochondrial-lysosomal axis theory of aging. Eur J Biochem 269: 1996-2002.Search in Google Scholar

Chang Y,Lee JJ, Hsieh CJ, Hsiao G, Chou DS and Sheu JR. (2009). Inhibitory Eff ects of Ketamine on Lipopolysaccharide-Induced Microglial Activation. Mediators Infl amm ID 705379.10.1155/2009/705379266252519343193Search in Google Scholar

Corona AW, Huang Y, O’Connor JS, Dantzer R, Kelley KW, Popovich PG and Godbout JP. (2010). Fractalkine receptor (CX3CR1) defi ciency sensitizes mice to the behavioral changes induced by lipopolysaccharide. J Neuroinflammation 7: 93.Search in Google Scholar

Crack PJ and Bray PJ. (2007). Toll-like receptors in the brain and their potential roles in neuropathology. Immunol Cell Biol 85: 476-480.Search in Google Scholar

Cuadros MA and Navascues J. (1998). The origin and diff erentiation of microglial cells during development. Prog Neurobiol 56: 173-189.Search in Google Scholar

Daniel WA, Wojcikowski J and Pałucha A. (2001). Intracellular distribution of psychotropic drugs in the grey and white matter of the brain: the role of lysosomal trapping. Br J Pharmacol 134: 807-814.Search in Google Scholar

Dello Russo C, Boullerne AI, Gavrilyuk V and Feinstein DL. (2004). Inhibition of microglial infl ammatory responses by norepinephrine: eff ects on nitric oxide and interleukin-1β production. J Neuroinfl ammation 1: 9.Search in Google Scholar

Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK and Lanctot KL. (2010). A meta-analysis of cytokines in major depression. Biol. Psychiatry 67: 446-457.Search in Google Scholar

Dunn AJ, Wang J and Ando T. (1999). Eff ects of cytokines on cerebral neurotransmission: Comparison with the eff ects of stress. Adv Exp Med Biol 461: 117-127.Search in Google Scholar

Eren I, Nazıroğlu M, Demirdaş A, Celik O, Uğuz AC, Altunbaşak A, Ozmen I and Uz E. (2007). Venlafaxine Modulates Depression-Induced Oxidative Stress in Brain and Medulla of Rat. Neurochem Res 32: 497-505.Search in Google Scholar

Garate I, Garcia-Bueno B, Madrigal JL, Caso CR, Alou L, Gomez-Lus ML, Mico CA, Leza JC. (2013). Stress-Induced Neuroinfl ammation: Role of the Toll- Like Receptor-4 Pathway. Biol Psychiatry 73: 32-43.Search in Google Scholar

Garate I, Garcia-Bueno B, Madrigal JLM, Bravo L, Berrocoso E, Caso JR, Mico JA and Leza JC. (2011) Origin and consequences of brain Toll-like receptor 4 pathway stimulation in an experimental model of depression. J Neuroinflammation 8: 151.10.1186/1742-2094-8-151321957122053929Search in Google Scholar

Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T and Yirmiya R.(2008). Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol. Psychiatry 13: 717-728.Search in Google Scholar

Hamidi M, Drevets WC and Price JL. (2004) Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry 55: 563-569.10.1016/j.biopsych.2003.11.00615013824Search in Google Scholar

Hashioka S, Klegeris A, Monji A, Kato T, Sawada M, McGeer PL and Kanba S. (2007). Antidepressants inhibit interferon-γ-induced microglial production of IL-6 and nitric oxide. Exp Neurol 206: 33-42.Search in Google Scholar

Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF and Godbout JP. (2008). Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinfl ammation, sickness behavior, and anhedonia. J Neuroinflammation 5: 15.Search in Google Scholar

Hinwood M, Morandini J, Day TA and Walker FR. (2012). Evidence that microglia mediate the neurobiological eff ects of chronic psychological stress on the medial prefrontal cortex. Cereb Cortex 22: 1442-1454.Search in Google Scholar

Horikawa H, Kato TA, Mizoguchi Y, Monji A, Seki Y, Ohkuri T, Gotoh L, Yonaha M, Ueda T, Hashioka S and Kanba S. (2010). Inhibitory eff ects of SSRIs on IFN-γ induced microglial activation through the regulation of intracellular calcium. Prog Neuropsychopharmacol Biol Psychiatry 34: 1306-1316.Search in Google Scholar

Howren MB, Lamkin DM and Suls J. (2009). Associations of depression with Creactive protein, IL-1, and IL-6: a meta-analysis. Psychosom. Med 71: 171-186.Search in Google Scholar

Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, Maier SF and Yirmiya R. (2014). Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 19: 699-709.Search in Google Scholar

Lanquillon S, Krieg JC, Bening-Abu-Shach U and Vedde H. (2000). Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacol 22: 370-379.Search in Google Scholar

Levine J, Barak Y, Chengapp KNR, Rapoport A, Rebey M and Barak V. (1999) Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology 40: 171-176.10.1159/00002661510559698Search in Google Scholar

Liu B, Wang K, Gao HM, Mandavilli B, Wang JY and Hong JS. (2001). Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem 77: 182-189.Search in Google Scholar

Maes M, Kubera M, Obuchowiczwa E, Goehler L and Brzeszcz J. (2011). Depression’s multiple comorbidities explained by (neuro)infl ammatory and oxidative & nitrosative stress pathways. Neuroendocrinol Lett 32: 7-24.Search in Google Scholar

Maletic V, Robinson M, Oakes T, Lyengar S, Ball SG and Russell J. (2007). Neurobiology of depression: an integrated view of key fi ndings. Int J Clin Pract 61: 2030-2040.Search in Google Scholar

Massart R, Mongeau R and Lanfumey L. (2012). Beyond the monoaminergic hypothesis: neuroplasticity and epigenetic changes in a transgenic mouse model of depression. Philos Trans R Soc Lond B Biol Sci 367: 1601.Search in Google Scholar

Michel TM, Pulschen D and Thome J.(2012). The role of oxidative stress in depressive disorders. Curr Pharm Des 18: 5890-9.Search in Google Scholar

Miller AH, Maletic V and Raison CL. (2009). Infl ammation and Its Discontents: The Role of Cytokines in the pathophysiology of Major Depression. Biol Psychiatry 65: 732-741.Search in Google Scholar

Moylan S, Berk M, Dean OM, Samuni Y, Williams L, O’Neil A, Hayley AC, Pasco JA, Anderson G, Jacka F and Maes M. ( 2014). Oxidative & nitrosative stress in depression: Why so much stress? Neurosci Biobehav Rev [in press].10.1016/j.neubiorev.2014.05.00724858007Search in Google Scholar

Muijsers RBR, Van Den Worm E, Folkerts G, Beukelman CJ, Koster AS, Postma DS and Nijkamp FP. (2000). Apocynin inhibits peroxynitrite formation by murine macrophages. Br J Pharmacol 130: 932-936.Search in Google Scholar

Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, Greshenfeld HK, Hen R, Koester S, Lederhendler I, Meaney M, Robbins T, Winsky L and Zalcman S. (2002). Preclinical models: status of basic research in depression. Biol. Psychiatry 52: 503-528.Search in Google Scholar

Obuchowicz E, Bielecka AM, Paul-Samojedny M, Pudełko A and Kowalski J.(2014). Imipramine and fl uoxetine inhibit LPS-induced activation and affect morphology of microglial cells in the rat glial culture. Pharmacol Rep 66: 34-43.Search in Google Scholar

Obuchowicz E, Kowalski J, Labuzek K, Krysiak R, Pendzich J and Herman ZS.(2006). Amitriptyline and nortriptyline inhibit interleukin-1β and tumour necrosis factor-α release by rat mixed glial and microglial cell cultures. Int J Neuropsychopharmacol 9: 27-35.Search in Google Scholar

Palta P, Samuel LJ, Miller ER and Szanton SL. (2014). Depression and oxidative stress: results from a meta-analysis of observational studies. Psychosom Med 76: 12-19.Search in Google Scholar

Pan Y, Chen XY, Zhang QY and Kong LD. (2014). Microglial NLRP3 infl ammasome activation mediates IL-1β-related infl ammation in prefrontal cortex of depressive rats. Brain Behav Immun 41: 90-100.Search in Google Scholar

Raison CL, Capuron L and Miller AH.(2006). Cytokines sing the blues: infl ammation and the pathogenesis of depression. Trends Immunol 27: 24-31.Search in Google Scholar

Schildkraut JJ. (1965). The catecholamine hypothesis of aff ective disorders: a review of supporting evidence. Am J Psychiatry 122: 509- 522.Search in Google Scholar

Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein HG and Bogerts B. (2008) Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 42: 151-157.10.1016/j.jpsychires.2006.10.01317174336Search in Google Scholar

Suarez EC, Lewis JG and Kuhn C. (2002). The relation of aggression, hostility, and anger to lipopolysaccharide-stimulated tumor necrosis factor (TNF)-alpha by blood monocytes from normal men. Brain Behav Immun 6: 675-684.Search in Google Scholar

Suarez EC, Lewis JG, Krishnan RR and Young KH. (2004). Enhanced expression of cytokines and chemokines by blood monocytes to in vitro lipopolysaccharide stimulation are associated with hostility and severity of depressive symptoms in healthy women. Psychoneuroendocrinol 29: 1119-1128.Search in Google Scholar

Thomas WE. (1999). Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Rev 31: 42-57.Search in Google Scholar

Tynan RJ, Weidenhofer J, Hinwood M, Cairns MJ, Day TA and Walker FR. (2012). A comparative examination of the anti-infl ammatory eff ects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav Immun 26: 469-479.Search in Google Scholar

Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuff er W and Fassbender K. (2007). Role of the toll-like receptor 4 in neuroinfl ammation in Alzheimer‘s disease. Cell Physiol Biochem 20: 947-56.Search in Google Scholar

Wohleb ES, Hanke ML, Corona AW, Powell ND, Stiner M, Bailey MT, Nelson RJ, Godbout JP and Sherida JF. (2011). β-Adrenergic Receptor Antagonism Prevents Anxiety-Like Behavior and Microglial Reactivity Induced by Repeated Social Defeat. J Neurosci 31: 6277-6288.Search in Google Scholar

Young JJ, Bruno D and Pomara N. (2014). A review of the relationship between proinfl ammatory cytokines and major depressive disorder. J Aff ect Disord 169: 15-20.Search in Google Scholar

Zhou QG, Zhu LJ, Chen C, Wu HY, Luo CX, Chang L and Zhu DY. (2011). Hippocampal Neuronal Nitric Oxide Synthase Mediates the Stress-Related Depressive Behaviors of Glucocorticoids by Downregulating Glucocorticoid Receptor. J Neuroscience 31: 7579-7590. Search in Google Scholar

eISSN:
1337-9569
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, Pharmacology, Toxicology