Accès libre

Chronic Kidney Disease and Oxidative Stress

, ,  et   
05 nov. 2024
À propos de cet article

Citez
Télécharger la couverture

Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun 2017; 482:426. DOI: 10.1016/j.bbrc.2016.11.088 Search in Google Scholar

West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol 2011; 11:389. DOI: 10.1038/nri2975 Search in Google Scholar

Halliwell B.The role of oxygen radicals in human disease, with particuar reference to the vascular system . Haemostasis 1993;23(Suppl 1 ):118-126. DOI: 10.1159/000216921 Search in Google Scholar

Ichikawa I, Kiyama S, Yoshioka T. Renal antioxidant enzymes: their regulation and function. Kidney In 1994; 45:1–9. DOI: 10.1038/ki.1994.1 Search in Google Scholar

Klemm A, Voigt C, Friedrich M et al. Determination of erythrocyte antioxidant capacity in haemodialysis patients using electron paramagnetic resonance. Nephrol Dial Transplant 2001;16: 2166–2171, DOI: 10.1093/ndt/16.11.2166 Search in Google Scholar

Halliwell B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res 1999;31:261–272. DOI: 10.1080/1071576990 0300841. Search in Google Scholar

Carr AC, McCall MR, Frei B. Oxidation of LDL by myeloperoxidase and reactive nitrogen species-reaction pathways and antioxidant protection. Arterioscler Thromb Vasc Biol 2000; 20:1716–1723. DOI: 10.1161/01.atv. 20.7.1716 Search in Google Scholar

Griendling KK, Sorescu D, Ushio‐Fukai M. NAD(P)H oxidase—role in cardiovascular biology and disease. Circ Res 2000; 86:494–501. DOI: 10.1161/01.res.86.5.494. Search in Google Scholar

Vásquez‐Vivar J, Kalyanaraman B. Generation of superoxide from nitric oxide synthase. FEBS Letters 2000;481:305–306. DOI: 10.1016/s0014-5793(00) 02001-9. Search in Google Scholar

Böger RH, Böde‐Boger SM, Phivthong‐ngam L et al. Dietary L‐arginine and α‐tocopherol reduce vascular oxidative stress and preserve endothelial function in hypercholesterolemic rabbits via different mechanisms. Atherosclerosis 1998;141:31–43.DOI: 10.1016/s0021-9150(98)00145-2. Search in Google Scholar

Heitzer T, Brockhoff C, Mayer B et al. Tetrahydrobiopterin improves endothelium‐ dependent vasodilation in chronic smokers—evidence for a dysfunctional nitric oxide synthase. Circ Res 2000;86:E36–E41. DOI.org/10.1161/01.RES.86.2.e36 Search in Google Scholar

Dobashi K, Ghosh B, Orak JK, Singh I, Singh AK. Kidney ischemia‐reperfusion: modulation of antioxidant defenses. Mol Cell Biochem 2000; 205:1–11 Search in Google Scholar

Shackelford RE, Kaufmann WK, Paules RS. Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 2000; 28: 1387–1404 Search in Google Scholar

Hannken T, Schroeder R, Zahner G, Stahl RAK, Wolf G. Reactive oxygen species stimulate p44/42 mitogen‐ activated protein kinase and induce p27Kip1: role in angiotensin II‐mediated hypertrophy of proximal tubular cells.J Am Soc Nephrol 2000; 11: 1387–1397 Search in Google Scholar

Berdeaux O, Scruel O, Durand T. Isoprostanes, biomarkers of lipid peroxidation in humans. Part 2: quantification methods. Pathol Biol. 2005;53:356–63. Search in Google Scholar

Grzebyk E, Piwowar A. Inhibitory actions of selected natural substances on formation of advanced glycation end products and advanced oxidation protein products. Complement Altern Med. 2016;16:38–41 Search in Google Scholar

Butkowski EG, Al-Aubaidy HA, Jelinek HF. Interaction of homocysteine, glutathione and 8-hydroxy-2’-deoxyguanosine in metabolic syndrome progression. Clin Biochem. 2016;15:22–36. Search in Google Scholar

Haleng J, Pincemail J, Defraigne JO, Charlier C, Chapelle JP. Le stress oxydant. Rev Med Liege. 2007;62:628–38. Search in Google Scholar

Čolak E, Ignjatović S, Radosavljević A, Žorić L. The association of enzymatic and non-enzymatic antioxidant defense parameters with inflammatory markers in patients with exudative form of age-related macular degeneration. J Clin Biochem Nutr. 2017;60:100–7. Search in Google Scholar

Bover J, Evenepoel P, Ureña-Torres P, et al. Pro: cardiovascular calcifications are clinically relevant. Nephrol Dial Transplant 2015; 30:345. Search in Google Scholar

Zoccali C, London G. Con: vascular calcification is a surrogate marker, but not the cause of ongoing vascular disease, and it is not a treatment target in chronic kidney disease. Nephrol Dial Transplant 2015; 30:352. Search in Google Scholar

Tabas I, Bornfeldt KE. Macrophage Phenotype and Function in Different Stages of Atherosclerosis. Circ Res 2016; 118:653. Search in Google Scholar

Watanabe S, Fujii H, Kono K, et al. Influence of oxidative stress on vascular calcification in the setting of coexisting chronic kidney disease and diabetes mellitus. Sci Rep 2020; 10:20708. Search in Google Scholar

Wei R, Enaka M, Muragaki Y. Activation of KEAP1/NRF2/P62 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production. Sci Rep 2019; 9:10366. Search in Google Scholar

Witko-Sarsat V, Drüeke T, Descamps-Latscha B, Canteloup S. Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol. 1998;161:2524–32. Search in Google Scholar

Tuttolomondo A, Di Raimondo D, Pecoraro R, et al. Atherosclerosis as an inflammatory disease. Curr Pharm Des. 2012;18:4266–88. Search in Google Scholar

Schmitz G, Herr AS, Rothe G. T-lymphocytes and monocytes in atherogenesis. Herz. 1998;23:168–77. Search in Google Scholar

Ikeda U, Takahashi M, Shimada K. Monocyteendothelial cell interaction in atherogenesis and thrombosis. Clin Cardiol. 1998;21:11–4. Search in Google Scholar

Descamps-Latscha B, Witko-Sarsat V. Advanced oxidation protein products as risk factors for atherosclerotic cardiovascular events in nondiabetic predialysis patients. Am J Kidney Dis. 2005;45:39–47. Search in Google Scholar

Weiner DE, Tabatabai S, Tighiouart H, et al. Cardiovascular outcomes and all-cause mortality: exploring the interaction between CKD and cardiovascular disease. Am J Kidney Dis. 2006;48:392–401. Search in Google Scholar

Migdal C, Serres M. Especes reactives de l’oxygene et stress oxydant. Med Sci. 2011;27:405–12. Search in Google Scholar

Maziere C, Gomila C, Maziere JC. Oxidized low-density lipoprotein increases osteopontin expression by generation of oxidative stress. Free Radic Biol Med. 2010;48:1382–7. Search in Google Scholar

Beaudeux JL, Peynet J, Bonnefont-Rousselot D, et al. Cellular sources of reactive oxygen and nitrogen species. Roles in signal transcription pathways. Ann Pharm Fr. 2006;64:373–81. Search in Google Scholar

Bogna G, Dorota F, Magdalena B, et al. Advanced oxidation protein products and carbonylated proteins as biomarkers of oxidative stress in selected atherosclerosis-mediated diseases. Biomed Res Int. 2017;20:487–97. Search in Google Scholar

Gao L, Mann GE. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc Res. 2009;82:9–20. Search in Google Scholar

Beaudeux JL, Dellatre J, Therond P, Bonnefont-Rousselot D, Legrand G, Peynet J. Le stress oxydant, composante physiopathologique de l’athérosclérose. Immuno-analyse Biologie Spécialisée. 2006;21:144–50. Search in Google Scholar

Choi B, Kang KS, Kwak MK. Effect of redox modulating NRF2 activators on chronic kidney disease. Molecules. 2014;19:12727–59. Search in Google Scholar

Gerdes N, Sukhova GK, Libby P, Reynolds RS, Young JL, Schonbeck U. Expressionof interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelialcells, smooth muscle cells, and macrophages: implications for atherogenesis. J Exp Med. 2002;195:245–57. Search in Google Scholar

Shen G, Jing L. Association between circulating oxidized low-density lipoprotein and atherosclerotic cardiovascular disease. Chron Dis Transl Med. 2017;3:89–94 Search in Google Scholar

Meier P, Spertini F, Blanc E, Burnier M. Oxidized low density lipoproteins activate CD4+ T cell apoptosis in patients with end-stage renal disease through Fas engagement. Am Soc Nephrol. 2007;18:331–42. Search in Google Scholar

Kita T, Kume N, Minami M, et al. Role of oxidized LDL in atherosclerosis. Ann N Y Acad Sci. 2001;947:199–205. Search in Google Scholar

Mori K, Lee HT, Rapoport D, et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 2005; 115:610.DOI: 10.1172/JCI23056 Search in Google Scholar

Scindia Y, Dey P, Thirunagari A, et al. Hepcidin Mitigates Renal Ischemia-Reperfusion Injury by Modulating Systemic Iron Homeostasis. J Am Soc Nephrol 2015; 26:2800. DOI: 10.1681/ASN.2014101037. Search in Google Scholar

Klahr S. Oxygen radicals and renal diseases.Miner Electrolyte Metab1997; 23:140–143. Search in Google Scholar

Witko Sarsat V, Friedlander M, Capeillere Blandin C et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 1996; 49: 1304–1313 Search in Google Scholar

Cristol JP, Bosc JY, Badiou S et al. Erythropoietin and oxidative stress in haemodialysis: beneficial effects of vitamin E supplementation. Nephrol Dial transplant 1997; 12: 2312–2317 Search in Google Scholar

Beutler E, Dale GL. Erythrocyte glutathione. In: Dolphin D, Avramovic O, Poulson R, eds. Glutathione: Biochemical and Medical Aspects. Part B. John Wiley & Sons, New York, 1989; 291 Search in Google Scholar

Biasioli S, Schiavon R, De Fanti E, Cavalcanti G, Giavarina D. The role of erythrocytes in the deperoxidative processes in people on hemodialysis. ASAIO J 1996; 42: M890–M894 Search in Google Scholar

Costagliola C, Romano L, Sorice P, Di‐Benedetto A. Anemia and chronic renal failure: the possible role of the oxidative state of glutathione. Nephron1989; 52: 11–14 Search in Google Scholar

Ceballos‐Picot I, Witko‐Sarsat V, Merad‐Boudia M et al. Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free Radic Biol red 1996; 21:845–853 Search in Google Scholar

Canestrari F, Galli F, Giorgini A et al. Erythrocyte redox state in uremic anemia: effects of hemodialysis and relevance of glutathione metabolism. Acta Haematol 1994; 91: 187–193 Search in Google Scholar

Chu P, Cadley M, Bellingham AJ. Red cell metabolism in renal failure—the effect of dialysis. Clin Lab Haemat 1985; 7: 1–5 Search in Google Scholar

Yawata Y, Jacob HS. Abnormal red cell metabolism in patients with chronic uraemia—nature of the defect and its persistence despite adequate hemodialysis. Blood 1975; 45: 231–239 Search in Google Scholar

Ansley DM, Sun J, Visser WA et al. High dose propofol enhances red cell antioxidant capacity during CPB in humans.Can J Anaesth 1999; 46: 641–648 Search in Google Scholar

Repetto MG, Reides CG, Evelson P, Kohan S, de-Lustig ES, Llesuy SF. Peripheral markers of oxidative stress in probable Alzheimer patients.Eur J Clin Invest 1999; 29:643–649 Search in Google Scholar

Maples KR, Kennedy CH, Jordan SJ, Mason RP. In vivo thiyl free radical formation from hemoglobin following administration of hydroperoxides. Arch Biochem Biophys 1990; 277: 402–409 Search in Google Scholar

Gwozdzinski K, Janicka M, Brzeszczynska J, Luciak M. Changes in red blood cell membrane structure in patients with chronic renal failure.Acta Biochim Pol 1997;44 :99–107. Search in Google Scholar