À propos de cet article

Citez

Lewandowska-Pietruszka Z, Figlerowicz M, Mazur-Melewska K. The History of the Intestinal Microbiota and the Gut-Brain Axis. Pathogens. 2022;11(12):1540. doi:10.3390/pathogens11121540 Open DOISearch in Google Scholar

Nanthakumaran S, Sridharan S, Somagutta MR, et al. The Gut-Brain Axis and Its Role in Depression. Cureus. 2020;12(9). doi:10.7759/cureus.10280 Open DOISearch in Google Scholar

La microbiota intestinal y surelación con las enfermedadesmentales a través del eje microbiotaintestino-cerebro. Accessed July 11, 2023. http://riberdis.cedid.es/handle/11181/5361 Search in Google Scholar

Liu Y, Sanderson D, Mian MF, McVey Neufeld KA, Forsythe P. Loss of vagal integrity disrupts immune components of the microbiota-gut-brain axis and inhibits the effect of Lactobacillus rhamnosus on behavior and the corticosterone stress response. Neuropharmacology. 2021;195:108682. doi:10.1016/j.neuropharm.2021.108682 Open DOISearch in Google Scholar

Gorecki AM, Dunlop SA, Rodger J, Anderton RS. The gut-brain axis and gut inflammation in Parkinson's disease: stopping neurodegeneration at the toll gate. Expert Opinion on Therapeutic Targets. 2020;24(7):601-604. doi:10.1080/14728222.2020.1763956 Open DOISearch in Google Scholar

Mayer EA, Nance K, Chen S. The Gut–Brain Axis. Annual Review of Medicine. 2022;73(1):439-453. doi:10.1146/annurev-med-042320-014032 Open DOISearch in Google Scholar

Xie Y, Zhou G, Wang C, Xu X, Li C. Specific Microbiota Dynamically Regulate the Bidirectional Gut–Brain Axis Communications in Mice Fed Meat Protein Diets. J Agric Food Chem. 2019;67(3):1003-1017. doi:10.1021/acs.jafc.8b05654 Open DOISearch in Google Scholar

Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787-8803. doi:10.3748/wjg.v21.i29.8787 Open DOISearch in Google Scholar

Kennedy EA, King KY, Baldridge MT. Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria. Frontiers in Physiology. 2018;9. Accessed July 11, 2023. https://www.frontiersin.org/articles/10.3389/fphys.2018.01534 Search in Google Scholar

Bajaj JS, Barbara G, DuPont HL, Mearin F, Gasbarrini A, Tack J. New concepts on intestinal microbiota and the role of the non-absorbable antibiotics with special reference to rifaximin in digestive diseases. Dig Liver Dis. 2018 Aug;50(8):741-749. doi: 10.1016/j.dld.2018.04.020. Open DOISearch in Google Scholar

Khoruts A. Targeting the microbiome: from probiotics to fecal microbiota transplantation. Genome Medicine. 2018;10(1):80. doi:10.1186/s13073-018-0592-8 Open DOISearch in Google Scholar

Thursby E, Juge N. Introduction to the human gut microbiota. Biochemical Journal. 2017;474(11):1823-1836. doi:10.1042/BCJ20160510 Open DOISearch in Google Scholar

Yoo JY, Groer M, Dutra SVO, Sarkar A, McSkimming DI. Gut Microbiota and Immune System Interactions. Microorganisms. 2020;8(10):1587. doi:10.3390/microorganisms8101587 Open DOISearch in Google Scholar

Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews. 2017;279(1):70-89. doi:10.1111/imr.12567 Open DOISearch in Google Scholar

Hong SW, O E, Lee JY, et al. Food antigens drive spontaneous IgE elevation in the absence of commensal microbiota. Science Advances. 2019;5(5):eaaw1507. doi:10.1126/sciadv.aaw1507 Open DOISearch in Google Scholar

Gao C, Major A, Rendon D, et al. Histamine H2 Receptor-Mediated Suppression of Intestinal Inflammation by Probiotic Lactobacillus reuteri. mBio. 2015;6(6):10. 1128/mbio. 01358-15. doi:10.1128/mbio.01358-15 Open DOISearch in Google Scholar

Caetano-Silva ME, Rund L, Hutchinson NT, Woods JA, Steelman AJ, Johnson RW. Inhibition of inflammatory microglia by dietary fiber and short-chain fatty acids. Sci Rep. 2023;13(1):2819. doi:10.1038/s41598-022-27086-x Open DOISearch in Google Scholar

Dicks LMT. Gut Bacteria and Neurotransmitters. Microorganisms. 2022;10(9):1838. doi:10.3390/microorganisms10091838 Open DOISearch in Google Scholar

Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne). 2020;11:25. doi:10.3389/fendo.2020.00025 Open DOISearch in Google Scholar

Farzi A, Fröhlich EE, Holzer P. Gut Microbiota and the Neuroendocrine System. Neurotherapeutics. 2018;15(1):5-22. doi:10.1007/s13311-017-0600-5 Open DOISearch in Google Scholar

Portincasa P, Bonfrate L, Vacca M, et al. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. International Journal of Molecular Sciences. 2022;23(3):1105. doi:10.3390/ijms23031105 Open DOISearch in Google Scholar

Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151-1156. doi:10.1126/science.aao5774 Open DOISearch in Google Scholar

De la Cuesta-Zuluaga J, Mueller NT, Álvarez-Quintero R, et al. Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients. 2019;11(1):51. doi:10.3390/nu11010051 Open DOISearch in Google Scholar

Tsigalou C, Paraschaki A, Karvelas A, et al. Gut microbiome and Mediterranean diet in the context of obesity. Current knowledge, perspectives and potential therapeutic targets. Metabolism Open. 2021;9:100081. doi:10.1016/j.metop.2021.100081 Open DOISearch in Google Scholar

Arhire LI, Padureanu SS, Gherasim A, Nita O, Oprescu AC, Gavril RS, Mihalache L. Is there a need for one-month medical follow-up after laparoscopic sleeve gastrectomy? Obes Surg. 2018; 28 (1): S107. Search in Google Scholar

Han H, Yi B, Zhong R, et al. From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators. Microbiome. 2021;9:162. doi:10.1186/s40168-021-01093-y Open DOISearch in Google Scholar

Mihalache L, Gherasim A, Ni ă O, Ungureanu MC, Pădureanu SS, Gavril RS, Arhire LI. Effects of ghrelin in energy balance and body weight homeostasis. Hormones. 2016; 15(2): 186-196. Search in Google Scholar

Gavril OI, Arhire LI, Gavril RS, et al. Correlations between PNPLA3 Gene Polymorphisms and NAFLD in Type 2 Diabetic Patients. Medicina. 2021; 57(11): 1249. Search in Google Scholar

Gupta A, Osadchiy V, Mayer EA. Brain-gut-microbiome interactions in obesity and food addiction. Nat Rev Gastroenterol Hepatol. 2020 Nov;17(11):655-672. doi: 10.1038/s41575-020-0341-5 Open DOISearch in Google Scholar

Ma J, Piao X, Mahfuz S, Long S, Wang J. The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Animal Nutrition. 2022;9:159-174. doi:10.1016/j.aninu.2021.09.012 Open DOISearch in Google Scholar

Willemsen LEM, Koetsier MA, van Deventer SJH, van Tol EAF. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E1 and E2 production by intestinal myofibroblasts. Gut. 2003;52(10):1442-1447. Accessed July 11, 2023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1773837/ Search in Google Scholar

Camilleri M. The Leaky Gut: Mechanisms, Measurement and Clinical Implications in Humans. Gut. 2019;68(8):1516-1526. doi:10.1136/gutjnl-2019-318427 Open DOISearch in Google Scholar

Stewart AS, Pratt-Phillips S, Gonzalez LM. Alterations in Intestinal Permeability: The Role of the “Leaky Gut” in Health and Disease. Journal of Equine Veterinary Science. 2017;52:10-22. doi:10.1016/j.jevs.2017.02.009 Open DOISearch in Google Scholar

Camilleri M, Vella A. What to do about the leaky gut. Gut. 2022;71(2):424-435. doi:10.1136/gutjnl-2021-325428 Open DOISearch in Google Scholar

Camilleri M. What is the leaky gut? Clinical considerations in humans. Current Opinion in Clinical Nutrition & Metabolic Care. 2021;24(5):473. doi:10.1097/MCO.0000000000000778 Open DOISearch in Google Scholar

Leaky brain in neurological and psychiatric disorders: Drivers and consequences - Gerwyn Morris, Brisa S Fernandes, Basant K Puri, Adam J Walker, Andre F Carvalho, Michael Berk, 2018. Accessed July 12, 2023. https://journals.sagepub.com/doi/full/10.1177/0004867418796955 Search in Google Scholar

Wu H, Wang J, Teng T, et al. Biomarkers of intestinal permeability and blood-brain barrier permeability in adolescents with major depressive disorder. Journal of Affective Disorders. 2023;323:659-666. doi:10.1016/j.jad.2022.11.058 Open DOISearch in Google Scholar

Luczynski P, McVey Neufeld KA, Oriach CS, Clarke G, Dinan TG, Cryan JF. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. International Journal of Neuropsychopharmacology. 2016 Aug 1;19(8):pyw020. Search in Google Scholar

Bercik P, Collins SM, Verdu EF. Microbes and the gut-brain axis. Neurogastroenterology& Motility. 2012;24(5):405-413. doi:10.1111/j.1365-2982.2012. 01906.x Open DOISearch in Google Scholar

Kim HS. Do an Altered Gut Microbiota and an Associated Leaky Gut Affect COVID-19 Severity? mBio. 2021;12(1):10.1128/mbio.03022-20. doi:10.1128/mbio.03022-20 Open DOISearch in Google Scholar

Zhang Y, Geng X, Tan Y, et al. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed Pharmacother. 2020;127:110195. doi:10.1016/j.biopha.2020.110195 Open DOISearch in Google Scholar

Karim A, Muhammad T, Ustrana S, Qaisar R. Intestinal permeability marker zonulin as a predictor of sarcopenia in chronic obstructive pulmonary disease. Respiratory Medicine. 2021;189:106662. doi:10.1016/j.rmed.2021.106662 Open DOISearch in Google Scholar

Li N, Dai Z, Wang Z, et al. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease. Respir Res. 2021;22:274. doi:10.1186/s12931-021-01872-z Open DOISearch in Google Scholar

Paray BA, Albeshr MF, Jan AT, Rather IA. Leaky Gut and Autoimmunity: An Intricate Balance in Individuals Health and the Diseased State. Int J Mol Sci. 2020;21(24):9770. doi:10.3390/ijms21249770 Open DOISearch in Google Scholar

Berer K, Gerdes LA, Cekanaviciute E, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proceedings of the National Academy of Sciences. 2017;114(40):10719-10724. doi:10.1073/pnas.1711233114 Open DOISearch in Google Scholar

Damci T, Nuhoglu I, Devranoglu G, Osar Z, Demir M, Ilkova H. Increased intestinal permeability as a cause of fluctuating postprandial blood glucose levels in Type 1 diabetic patients. European journal of clinical investigation. 2003 May;33(5):397-401. Search in Google Scholar

Watts T, Berti I, Sapone A, et al. Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc Natl Acad Sci U S A. 2005;102(8):2916-2921. doi:10.1073/pnas.0500178102 Open DOISearch in Google Scholar

Yeoh N, Burton JP, Suppiah P, Reid G, Stebbings S. The Role of the Microbiome in Rheumatic Diseases. CurrRheumatol Rep. 2013;15(3):314. doi:10.1007/s11926 -012-0314-y Open DOISearch in Google Scholar

Audo R, Sanchez P, Rivière B, et al. Rheumatoid arthritis is associated with increased gut permeability and bacterial translocation that are reversed by inflammation control. Rheumatology. 2023;62(3):1264-1271. doi:10.1093/rheumatology/keac454 Open DOISearch in Google Scholar

Zhong D, Wu C, Zeng X, Wang Q. The role of gut microbiota in the pathogenesis of rheumatic diseases. Clin Rheumatol. 2018;37(1):25-34. doi:10.1007/s10067-017-3821-4 Open DOISearch in Google Scholar

ZununiVahed S, Barzegari A, Zuluaga M, Letourneur D, Pavon-Djavid G. Myocardial infarction and gut microbiota: An incidental connection. Pharmacological Research. 2018;129:308-317. doi:10.1016/j.phrs.2017.11.008 Open DOISearch in Google Scholar

Novakovic M, Rout A, Kingsley T, et al. Role of gut microbiota in cardiovascular diseases. World J Cardiol. 2020;12(4):110-122. doi:10.4330/wjc.v12.i4.110 Open DOISearch in Google Scholar

Gavril RS, Mastaleru A, Mitu O, et al. Cardiovascular Risk Assesment in Nonalcoholic Fatty Liver Disease. Filodiritto Editore Proceedings. 2018: 38-41. Search in Google Scholar

Liu Y, Dai M. Trimethylamine N-Oxide Generated by the Gut Microbiota Is Associated with Vascular Inflammation: New Insights into Atherosclerosis. Mediators Inflamm. 2020;2020:4634172. doi:10.1155/2020/4634172 Open DOISearch in Google Scholar

Zhu Y, Li Q, Jiang H. Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide. APMIS. 2020;128(5):353-366. doi:10.1111/apm.13038 Open DOISearch in Google Scholar

Tacconi E, Palma G, De Biase D, et al. Microbiota Effect on Trimethylamine N-Oxide Production: From Cancer to Fitness—A Practical Preventing Recommendation and Therapies. Nutrients. 2023;15(3):563. doi:10.3390/nu15030563 Open DOISearch in Google Scholar

He Z, Chen ZY. The origin of trimethylamine-N-oxide (TMAO) and its role in development of atherosclerosis. Journal of Food Bioactives. 2018;2:28-36. doi:10.31665/JFB.2018.2138 Open DOISearch in Google Scholar

Lau WL, Vaziri ND. The Leaky Gut and Altered Microbiome in Chronic Kidney Disease. Journal of Renal Nutrition. 2017;27(6):458-461. doi:10.1053/j.jrn.2017.02.010 Open DOISearch in Google Scholar

Lau WL, Savoj J, Nakata MB, Vaziri ND. Altered microbiome in chronic kidney disease: systemic effects of gut-derived uremic toxins. Clin Sci (Lond). 2018;132(5):509-522. doi:10.1042/CS20171107 Open DOISearch in Google Scholar

Rydzewska-Rosołowska A, Sroka N, Kakareko K, Rosołowski M, Zbroch E, Hryszko T. The Links between Microbiome and Uremic Toxins in Acute Kidney Injury: Beyond Gut Feeling—A Systematic Review. Toxins. 2020;12(12):788. doi:10.3390/toxins12120788 Open DOISearch in Google Scholar

Stengel A, Gourcerol G, Taché Y. Neurogastroenterology–Focus on the Gut-Brain Axis. Frontiers in Psychiatry. 2021 Mar 4;12:653910. Search in Google Scholar

Durgan DJ, Lee J, McCullough LD, Bryan RM Jr. Examining the Role of the Microbiota-Gut-Brain Axis in Stroke. Stroke. 2019 Aug;50(8):2270-2277. doi: 10.1161/STROKEAHA.119.025140. Epub 2019 Jul 5. PMID: 31272315; PMCID: PMC6646086. Open DOISearch in Google Scholar

Sinagra E, Pellegatta G, Guarnotta V, Maida M, Rossi F, Conoscenti G, Pallio S, Alloro R, Raimondo D, Pace F, Anderloni A. Microbiota gut–brain axis in ischemic stroke: a narrative review with a focus about the relationship with inflammatory bowel disease. Life. 2021 Jul 19;11(7):715. Search in Google Scholar

Benakis C, Liesz A. The gut-brain axis in ischemic stroke: its relevance in pathology and as a therapeutic target. Neurol Res Pract. 2022;4(1):57. doi:10.1186/s42466-022-00222-8 Open DOISearch in Google Scholar

Zhang M na, Shi Y dan, Jiang H yin. The risk of dementia in patients with inflammatory bowel disease: a systematic review and meta-analysis. Int J Colorectal Dis. 2022;37(4):769-775. doi:10.1007/s00384-022-04131-9 Open DOISearch in Google Scholar

A. Kohler C, Maes M, Slyepchenko A, et al. The Gut-Brain Axis, Including the Microbiome, Leaky Gut and Bacterial Translocation: Mechanisms and Pathophysiological Role in Alzheimer's Disease. Current Pharmaceutical Design. 2016;22(40):6152-6166. Search in Google Scholar

Cells | Free Full-Text | Gut Microbiota, Its Role in Induction of Alzheimer's Disease Pathology, and Possible Therapeutic Interventions: Special Focus on Anthocyanins. Accessed July 12, 2023. https://www.mdpi.com/2073-4409/9/4/853 Search in Google Scholar

Yang D, Zhao D, Ali Shah SZ, et al. The Role of the Gut Microbiota in the Pathogenesis of Parkinson's Disease. Frontiers in Neurology. 2019;10. Accessed July 12, 2023. https://www.frontiersin.org/articles/10.3389/fneur.2019.01155 Search in Google Scholar

Dong S, Sun M, He C, Cheng H. Brain-gut-microbiota axis in Parkinson's disease: A historical review and future perspective. Brain Research Bulletin. 2022;183:84-93. doi:10.1016/j.brainresbull.2022.02.015 Open DOISearch in Google Scholar

Caiaffo V, Oliveira BD, de Sá FB, Evêncio Neto J. Anti-inflammatory, antiapoptotic, and antioxidant activity of fluoxetine. Pharmacology research & perspectives. 2016 Jun;4(3):e00231. Search in Google Scholar

Gałecki P, Mossakowska-Wójcik J, Talarowska M. The anti-inflammatory mechanism of antidepressants – SSRIs, SNRIs. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2018;80:291-294. doi:10.1016/j.pnpbp.2017.03.016 Open DOISearch in Google Scholar

Dinan TG, Stanton C, Cryan JF. Psychobiotics: A Novel Class of Psychotropic. Biological Psychiatry. 2013;74(10):720-726. doi:10.1016/j.biopsych.2013.05.001 Open DOISearch in Google Scholar

Cheng LH, Liu YW, Wu CC, Wang S, Tsai YC. Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. Journal of Food and Drug Analysis. 2019;27(3):632-648. doi:10.1016/j.jfda.2019.01.002 Open DOISearch in Google Scholar

Evrensel A, Ünsalver BÖ, Ceylan ME. Psychobiotics. In: Kim YK, ed. Frontiers in Psychiatry: Artificial Intelligence, Precision Medicine, and Other Paradigm Shifts. Advances in Experimental Medicine and Biology. Springer; 2019:565-581. doi:10.1007/978-981-32-9721-0_28 Open DOISearch in Google Scholar

Bauer KC, Huus KE, Finlay BB. Microbes and the mind: emerging hallmarks of the gut microbiota–brain axis. Cellular Microbiology. 2016;18(5):632-644. doi:10.1111/cmi.12585 Open DOISearch in Google Scholar

Vuong HE, Hsiao EY. Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biological Psychiatry. 2017;81(5):411-423. doi:10.1016/j.biopsych.2016.08.024 Open DOISearch in Google Scholar

The microbiome and gut homeostasis | Science. Accessed July 12, 2023. https://www.science.org/doi/full/10.1126/science.abp9960 Search in Google Scholar

QIN, Da, et al. Contribution of Lactobacilli on Intestinal Mucosal Barrier and Diseases: Perspectives and Challenges of Lactobacillus casei. Life, 2022, 12.11: 1910. Search in Google Scholar

RANUH, Reza, et al. Effect of the probiotic Lactobacillus plantarum IS-10506 on BDNF and 5HT stimulation: Role of intestinal microbiota on the gut-brain axis. Iranian Journal of Microbiology, 2019, 11.2: 145. Search in Google Scholar

Martoni CJ, Srivastava S, Leyer GJ. Lactobacillus acidophilus DDS-1 and Bifidobacterium lactis UABla-12 improve abdominal pain severity and symptomology in irritable bowel syndrome: randomized controlled trial. Nutrients. 2020 Jan 30;12(2):363. Search in Google Scholar

Tette FM, Kwofie SK, Wilson MD. Therapeutic anti-depressant potential of microbial GABA produced by Lactobacillus rhamnosus strains for GABAergic signaling restoration and inhibition of addiction-induced HPA axis hyperactivity. Current Issues in Molecular Biology. 2022 Mar 22;44(4):1434-51. Search in Google Scholar

Sushma G, Vaidya B, Sharma S, et al. Bifidobacterium breve Bif11 supplementation improves depression-related neurobehavioural and neuroinflammatory changes in the mouse. Neuropharmacology. 2023;229:109480. doi:10.1016/j.neuropharm.2023.109480 Open DOISearch in Google Scholar

Fattorusso A, Di Genova L, Dell'Isola GB, Mencaroni E, Esposito S. Autism spectrum disorders and the gut microbiota. Nutrients. 2019 Feb 28;11(3):521. Search in Google Scholar

Abdel-Wahab BA, F. Abd El-Kareem H, Alzamami A, A. Fahmy C, H. Elesawy B, Mostafa Mahmoud M, Ghareeb A, El Askary A, H. Abo Nahas H, GM Attallah N, Altwaijry N. Novel exopolysaccharide from marine Bacillus subtilis with broad potential biological activities: Insights into antioxidant, anti-Inflammatory, cytotoxicity, and anti-Alzheimer activity. Metabolites. 2022 Jul 31;12(8):715. Search in Google Scholar

Siesto G, Pietrafesa R, Infantino V, Thanh C, Pappalardo I, Romano P, Capece A. In vitro study of probiotic, antioxidant and anti-inflammatory activities among indigenous Saccharomyces cerevisiae strains. Foods. 2022 May 5;11(9):1342. Search in Google Scholar

Yaghoubfar R, Behrouzi A, Ashrafian F, Shahryari A, Moradi HR, Choopani S, Hadifar S, Vaziri F, Nojoumi SA, Fateh A, Khatami S. Modulation of serotonin signaling/metabolism by Akkermansiamuciniphila and its extracellular vesicles through the gut-brain axis in mice. Scientific reports. 2020 Dec 17;10(1):22119. Search in Google Scholar

Liu M, Zhang X, Hao Y, Ding J, Shen J, Xue Z, Qi W, Li Z, Song Y, Zhang T, Wang N. Protective effects of a novel probiotic strain, Lactococcus lactis ML2018, in colitis: in vivo and in vitro evidence. Food & function. 2019;10(2):1132-45. Search in Google Scholar

Hiergeist A, Gessner J, Gessner A. Current limitations for the assessment of the role of the gut microbiome for attention deficit hyperactivity disorder (ADHD). Frontiers in Psychiatry. 2020 Jun 26;11:623. Search in Google Scholar

SUN, Jing, et al. Effect of Clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer's disease via regulating gut microbiota and metabolites butyrate. Molecular nutrition & food research, 2020, 64.2: 1900636. Search in Google Scholar

Chen L, Reynolds C, David R, Peace Brewer A. Development of an Index Score for Intestinal Inflammation-Associated Dysbiosis Using Real-World Stool Test Results. Dig Dis Sci. 2020;65(4):1111-1124. doi:10.1007/s10620-019-05828-8. Open DOISearch in Google Scholar

eISSN:
1220-5818
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, Internal Medicine, other, Cardiology, Gastroenterology, Pneumology