Nécessite une authentification

An update to Kidd blood group system

À propos de cet article

Citez

1. Hamilton JR. Kidd blood group system: a review. Immunohematology 2015;31:29–34. DOI:10.21307/immunohematology-2019-068.Search in Google Scholar

2. International Society for Blood Transfusion. 009 JK alleles. v8.2 31-DEC-2023. Available from https://www.isbtweb.org/resource/009jk.html. Accessed 1 February 2024.Search in Google Scholar

3. Soleimani R, Cabo J, Frelik A, et al. SLC14A1 gene sequencing shows the JK*01W.06 allele in a JK1 patient with an anti-JK1. Hematol Transfus Cell Ther 2023. DOI: 10.1016/j. htct.2023.10.004.Search in Google Scholar

4. Samuel J, Vege S, Aeschlimann J, et al. Novel JK allele background associated with production of anti-JK3 during pregnancy. Transfusion 2018;58:1078–9. DOI: 10.1111/trf.14514.Search in Google Scholar

5. Manrai PA, Siddon AJ, Hager KM, et al. Development of anti-Jk3 associated with silenced Kidd allele antigen expression and a novel single nucleotide variant of the JK gene. Immunohematology 2021;37:109–12. DOI: 10.21307/immunohematology-2021-015.Search in Google Scholar

6. Allhoff W, Weidner L, Lindlbauer N, et al. Jknull alleles in two patients with anti-Jk3. Blood Transfus 2021;19:237–43. DOI: 10.2450/2021.0349-20.Search in Google Scholar

7. Dinardo C, Oliveira TGM, Kelly S. Diversity of variant alleles encoding Kidd, Duffy, and Kell antigens in individuals with sickle cell disease using whole genome sequencing data from the NHLBI TOPMed program. Transfusion 2021;61:603–19. DOI:10.111/trf.16204.Search in Google Scholar

8. Vorholt SM, Lenz V, Just B, et al. High-throughput next-generation sequencing of the Kidd blood group: unexpected antigen expression properties of four alleles and detection of novel variants. Transfus Med Hemother 2022. DOI: 10.1159/000525326.Search in Google Scholar

9. Montemayor C, Simone A, Long J, et al. An open-source python library for the detection of known and novel Kell, Duffy, and Kidd variants from exome sequencing. Vox Sang 2021;116:145–63. DOI: 10.1111/vox.13035.Search in Google Scholar

10. Isa K, Takada S, Takeda H, et al. Two new JK silencing alleles identified by single molecule sequencing with 20-Kb long-reads. Transfusion 2023;63:1441–6. DOI: 10.1111/trf.17397.Search in Google Scholar

11. Billingsley K, Posadas JB, Moulds JM, et al. A novel JK null allele associated with typing discrepancies among African Americans. Immunohematology 2013;29:145–8. PMID: 24689685.Search in Google Scholar

12. Wagner FF, Bittner R, Beermann S, et al. Most JK*01W.01 donors display a normal JK phenotype (abstract). Vox Sang 2021;116:38(P-044). DOI: 10.1111/vox.13117.Search in Google Scholar

13. Oschenfeld JJ, Nygren A, Starry A, Edmunds M. A novel allele in the Kidd blood group system (abstract). Transfusion 2021;61:120A. DOI: 10.1111/trf.16623.Search in Google Scholar

14. Lindquist M, Smith A, Simmons L, et al. Novel JK*02 allele associated with Jkb typing discrepancy in a blood donor (abstract). Transfusion 2021;61:139A. DOI:10.1111/trf.16623Search in Google Scholar

15. Gueuning M, Thun, GA, Trost N, et al. Resolving genotype–phenotype discrepancies of the Kidd blood group system using long-read nanopore sequencing. Biomedicines 2024;12:225. DOI: 10.3390/biomedicines12010225.Search in Google Scholar

16. Vege S, Hue-Roye K, Velliquette RW, et al. Characterization and prevalence of Kidd system genotype/phenotype discrepancies in minority donors (abstract). Transfusion 2013;53(Suppl):164A. DOI: 10.1111/trf.12401.Search in Google Scholar

17. Vege S, Lomas-Francis C, Hue-Roye K, et.al. Novel JK*A alleles associated with reduced antigen expression: implications for apparent Kidd null phenotypes (abstract). Transfusion 2015;55(Suppl 3):35A. DOI: 10.1111/trf.13294.Search in Google Scholar

18. Wu PC, Chyan T, Feng S, et al. Genotyping and serotyping profiles showed weak Jka presentation for previously typed as Jknull donors. Vox Sang 2019;114:268–74. DOI: 10.111/vox.12759.Search in Google Scholar

19. Dalgleish R, Flicek P, Cunningham F, et al. Locus Reference Genomic sequences: an improved basis for describing human DNA variants. Genome Med 2010;2:24. DOI: 10.1186/gm145.Search in Google Scholar

20. Locus Reference Genomic. LGR_802-SLC14A1. Available from http://ftp.ebi.ac.uk/pub/databases/lrgex/LRG_802.xml. Accessed 3 February 2024.Search in Google Scholar

21. Okubo Y, Yamaguchi H, Nago N, et al. Heterogeneity of the phenotype Jk(a–b–) found in Japanese. Transfusion 1986; 26:237–9. DOI: org/10.1046/j.1537-2995.1986.26386209377.x.Search in Google Scholar

22. Garcia-Sanchez F, Schulz V, Gallaher P, et al. Discovery of the genetic cause of the autosomal dominant Kidd-null phenotype (abstract). Transfusion 2017;57(Suppl 3):29A. DOI:10.1111/trf.14286.Search in Google Scholar

23. Garcia-Sanchez F, Krause D, Perez-Garcia, et al. A zinc-finger deletion at ZNF850 defines the dominant Kidd-null red blood cell phenotype (INJK) with familiar mood disorder. Vox Sang 2017;112(Suppl 1):53. DOI: 10.1111/vox.12530.Search in Google Scholar

24. Dietz L, Chi G, Pike ACW. Structural Genomics Consortium. X-ray structure of the human urea channel SLC14A1/UT1. Protein Data Bank 2019;6QD5. DOI: 10.2210/pdb6QD5/pdb.Search in Google Scholar

25. Ramsey G. Structural locations of single-nucleotide missense variants in the Kidd blood group system on human urea transporter B [abstract]. Vox Sang 2022;117: 57. DOI: 10.1111/vox.13285.Search in Google Scholar

26. Eckley C, Figueroa D, Hoffman R, et al. Autoanti-Jk3 and alloanti-Jka in a patient with a variant JK*A gene (abstract). Transfusion 2013;53(Suppl 1):49A. DOI: 10.1111/trf.12401.Search in Google Scholar

27. Yu L, Liu T, Fu S, et al. Physiological functions of urea transporter B. Pflugers Arch 2019;471:1359–68. DOI: 10.1007/s00424-019-02323-x.Search in Google Scholar

28. Min Lug, Zhang S, Yang B. Urea transporters identified as novel diuretic drug targets. Curr Drug Targets 2020;21;279–87. DOI: 10.2174/1389450120666191129101915.Search in Google Scholar

29. Narayan S (Ed.), Poles D, et al. on behalf of the Serious Hazards of Transfusion (SHOT) Steering Group. The 2022 annual SHOT report (2023). DOI: 10.57911/wz85-3885.Search in Google Scholar

30. Narayan S (Ed.), Poles D, et al. on behalf of the Serious Hazards of Transfusion (SHOT) Steering Group. The 2021 annual SHOT report (2022). https://doi.org/10.57911/QZF9-XE84.Search in Google Scholar

31. Narayan S (Ed.), Poles D, et al. on behalf of the Serious Hazards of Transfusion (SHOT) Steering Group. The 2020 annual SHOT report (2021). https://doi.org/10.57911/FN15-ME02.Search in Google Scholar

32. Tormey CA, Hendrickson JE. Transfusion-related red blood cell alloantibodies: induction and consequences. Blood 2019;133:1821–30. DOI: 10.1182/blood-2018-08-833962.Search in Google Scholar

33. Kay B, Poisson JL, Tuma CW, Shulman IA. Anti-Jka that are detected by solid-phase red blood cell adherence but missed by gel testing can cause hemolytic transfusion reactions. Transfusion 2016;56:2973–9. DOI: 10.1111/trf.13782.Search in Google Scholar

34. Wong P, Chatrapati R, Williams S, et al. A Houdini act: transient loss of Jka resulting in anti-Jk3 antibody formation. Transfus Med 2021;31:303–4. DOI: 10.1111tme.12770.Search in Google Scholar

35. Issitt PD, Ovarski G, Hartnett PL, et al. Temporary suppression of Kidd system antigen expression accompanied by transient production of anti-Jk3. Transfusion 1990;30:46–50. DOI: 10.1046/j.1537-2995.1990.30190117630.x22967.Search in Google Scholar

36. Lawicki S, Coberly EA, Lee LA. Jk3 alloantibodies during pregnancy: blood bank management and hemolytic disease of the fetus and newborn risk. Transfusion 2018;58:1157–62. DOI: 10.1111/trf.14548.Search in Google Scholar

37. Mittal K, Sood T, Bansal N, et al. Clinical significance of rare maternal anti-Jka antibody. Indian J Hematol Blood Transfus 2016;32:498–9. DOI: 10.1007/s12288-016-0688-5.Search in Google Scholar

38. Mandal S, Malhotra S, Negi G, et al. Severe hemolytic disease of the fetus and newborn due to anti-E and anti-Jka. Immunohematology 2020;36:60–3.Search in Google Scholar

39. Dias T, Patabendige M, Kajendran J, Kularathna M. Jk3 antibodies complicated with severe fetal anaemia requiring intrauterine transfusion: a case report. Transfus Med 2019; 29:214–6. DOI:10.1111/tme.12490.Search in Google Scholar

40. Leonard A, Hittson Boal L, Pary P, et al. Identification of red blood cell antibodies in maternal breast milk implicated in prolonged hemolytic disease of the fetus and newborn. Transfusion 2019;59:1183–9. DOI: 10.1111/trf.15154.Search in Google Scholar

41. Hamilton MS, Singh V, Warady BA. Plasma cell–rich acute cellular rejection of a transplanted kidney associated with antibody to the red cell Kidd antigen. Pediatr Transplant 2006;10:974–7. DOI:10.1111/j.1399-3046.2006.00608.x1709 6770.Search in Google Scholar

42. Hamilton MS, Singh V, Warady BA. Additional case of acute cellular kidney rejection associated with antibodies to the red blood cell Kidd antigen. Pediatr Transplant 2008;12:918–9. DOI:10.1111/j.1399-3046.2008.00954.x18433406.Search in Google Scholar

43. Rourk A, Squires JE. Implications of Kidd blood group system in renal transplantation. Immunohematology 2012;3:91–4. DOI: 10.21307/immunohematology-2019-156.Search in Google Scholar

44. Holt S, Donaldson H, Hazlehurst G, et al. Acute transplant rejection induced by blood transfusion reaction to the Kidd blood group system. Nephrol Dial Transplant 2004;19:2403–6. DOI:10.1093/ndt/gfh33315299103.Search in Google Scholar

45. Shaw J, Gibson I, Wiebe C, et al. Hyperacute antibody-mediated rejection associated with red blood cell antibodies. Transplant Direct 2019;5:e477. DOI: 10.1097/TXD.0000000000000925.Search in Google Scholar

46. Ramsey G, Leventhal J, Freidewald JJ, et al. Kidney transplant outcomes in patients with anti-donor Kidd blood group antibodies (abstract). Transfusion 2017;57(Suppl 3):7A. DOI: 10.1111/trf.14286.Search in Google Scholar

47. Subramaniyan R. Occurrence of five distinct red cell allo-antibodies in a renal transplant recipient: diagnostic and therapeutic implications of minor histocompatibility antigens (Kidd and Duffy) for renal allograft outcome. APMIS 2017;125:1129–32. DOI: 10.1111/apm.12773.Search in Google Scholar

48. Lee ES, McHenry A, Siddon AJ, et al. Renal allograft rejection with thrombotic microangiopathy associated with a Kidd blood group system alloantibody (abstract). Am J Clin Pathol 2021;156:S159. DOI: 10.1093/ajcp/aqab191.340.Search in Google Scholar

eISSN:
1930-3955
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, Laboratory Medicine