Nécessite une authentification

Impact of transcription factors KLF1 and GATA1 on red blood cell antigen expression: a review

À propos de cet article

Citez

1. Singleton BK, Frayne J, Anstee DJ. Blood group phenotypes resulting from mutations in erythroid transcription factors. Curr Opin Hematol 2012;19:486–93.Search in Google Scholar

2. Chen H, Pugh BF. What do transcription factors interact with? J Mol Biol 2021;433:166883.Search in Google Scholar

3. Caulier AL, Sankaran VG. Molecular and cellular mechanisms that regulate human erythropoiesis. Blood 2022;139:2450–9.Search in Google Scholar

4. Perkins A, Xu X, Higgs DR, et al. Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants. Blood 2016;127:1856–62.Search in Google Scholar

5. Barbarani G, Fugazza C, Strouboulis J, Ronchi AE. The pleiotropic effects of GATA1 and KLF1 in physiological erythropoiesis and in dyserythropoietic disorders. Front Physiol 2019;10:91.Search in Google Scholar

6. Ling T, Crispino JD. GATA1 mutations in red cell disorders. IUBMB Life 2020;72:106–18.Search in Google Scholar

7. Eernstman J, Veldhuisen B, Ligthart P, von Lindern M, van der Schoot CE, van den Akker E. Novel variants in Krueppel like factor 1 that cause persistence of fetal hemoglobin in In(Lu) individuals. Sci Rep 2021;11:18557.Search in Google Scholar

8. Fraser NS, Knauth CM, Moussa A, et al. Genetic variants within the erythroid transcription factor, KLF1, and reduction of the expression of Lutheran and other blood group antigens: review of the In(Lu) phenotype. Transfus Med Rev 2019;33:111–7.Search in Google Scholar

9. International Society of Blood Transfusion (ISBT). Red cell immunogenetics and blood group terminology. Available from http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/. Accessed 2023 December.Search in Google Scholar

10. Shimizu R, Yamamoto M. Recent progress in analyses of GATA1 in hematopoietic disorders: a mini-review. Front Hematol 2023;2.Search in Google Scholar

11. Borg J, Patrinos GP, Felice AE, Philipsen S. Erythroid phenotypes associated with KLF1 mutations. Haematologica 2011;96:635–8.Search in Google Scholar

12. Ferreira R, Ohneda K, Yamamoto M, Philipsen S. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol 2005;25:1215–27.Search in Google Scholar

13. UniProt. Available from https://www.uniprot.org. Accessed 2023 December.Search in Google Scholar

14. HUGO Gene Nomenclature Committee. Available from https://www.genenames.org/. Accessed 2023 December.Search in Google Scholar

15. Ensembl. Available from https://www.ensembl.org. Accessed 2023 December.Search in Google Scholar

16. National Center for Biotechnology Information. Available from https://www.ncbi.nlm.nih.gov. Accessed 2023 December.Search in Google Scholar

17. Norton LJ, Hallal S, Stout ES, et al. Direct competition between DNA binding factors highlights the role of Krüppel-like factor 1 in the erythroid/megakaryocyte switch. Sci Rep 2017;7:3137.Search in Google Scholar

18. Tallack MR, Magor GW, Dartigues B, et al. Novel roles for KLF1 in erythropoiesis revealed by mRNA-seq. Genome Res 2012;22:2385–98.Search in Google Scholar

19. Magor GW, Tallack MR, Gillinder KR, et al. KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome. Blood 2015;125:2405–17.Search in Google Scholar

20. Singleton BK, Burton NM, Green C, Brady RL, Anstee DJ. Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype. Blood 2008;112:2082–8.Search in Google Scholar

21. Westman JS, Stenfelt L, Vidovic K, et al. Allele-selective RUNX1 binding regulates P1 blood group status by trans-criptional control of A4GALT. Blood 2018;131:1611–6.Search in Google Scholar

22. Singleton BK, Lau W, Fairweather VS, et al. Mutations in the second zinc finger of human EKLF reduce promoter affinity but give rise to benign and disease phenotypes. Blood 2011;118:3137–45.Search in Google Scholar

23. Caria CA, Faà V, Ristaldi MS. Krüppel-like factor 1: a pivotal gene regulator in erythropoiesis. Cells 2022;11.Search in Google Scholar

24. Rouillard AD, Gundersen GW, Fernandez NF, et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database 2016;2016:baw100.Search in Google Scholar

25. Gallienne AE, Dréau HM, Schuh A, Old JM, Henderson S. Ten novel mutations in the erythroid transcription factor KLF1 gene associated with increased fetal hemoglobin levels in adults. Haematologica 2012;97:340–3.Search in Google Scholar

26. Liu D, Zhang X, Yu L, et al. KLF1 mutations are relatively more common in a thalassemia endemic region and ameliorate the severity of β-thalassemia. Blood 2014;124:803–11.Search in Google Scholar

27. Bhalla K, Chugh M, Mehrotra S, et al. Host ICAMs play a role in cell invasion by Mycobacterium tuberculosis and Plasmodium falciparum. Nature Commun 2015;6:6049.Search in Google Scholar

28. Cowman AF, Tonkin CJ, Tham W-H, Duraisingh MT. The molecular basis of erythrocyte invasion by malaria parasites. Cell Host Microbe 2017;22:232–45.Search in Google Scholar

29. Viprakasit V, Ekwattanakit S, Riolueang S, et al. Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression. Blood 2014;123:1586–95.Search in Google Scholar

30. Paccapelo C, Frison S, Truglio F, et al. Resolution of Lutheran typing discrepancies due to an In(Lu) phenotype. Vox Sang 2017;112(Suppl 1):228.Search in Google Scholar

31. Henny C, Graber J, Stettler J, Lejon Crottet S, Hustinx H, Niederhauser C. A novel KLF1 allele leading to an In(Lu) phenotype. Vox Sang 2017;112(Suppl 1):228.Search in Google Scholar

32. Maurer JL, Kavitsky V, Facey DA, Nance SJ, Keller J, Keller MA. Molecular characterization of Lu(a–b–) rare donors identifies two novel KLF1 alleles (abstract). Transfusion 2021;61(Suppl 3):55A.Search in Google Scholar

33. Floch A, Vege S, Burgos A, et al. A new deletion in the KLF1 gene resulting in an In(Lu) phenotype (abstract). Transfusion 2021;61(Suppl 3):118A–119A.Search in Google Scholar

34. Freson K, Wijgaerts A, Van Geet C. GATA1 gene variants associated with thrombocytopenia and anemia. Platelets 2017;28:731–4.Search in Google Scholar

35. Ludwig LS, Lareau CA, Bao EL, et al. Congenital anemia reveals distinct targeting mechanisms for master transcription factor GATA1. Blood 2022;139:2534–46.Search in Google Scholar

36. Jurk K, Adenaeuer A, Sollfrank S, et al. Novel GATA1 variant causing a bleeding phenotype associated with combined platelet α-/δ-storage pool deficiency and mild dyserythropoiesis modified by a SLC4A1 variant. Cells 2022;11:3071.Search in Google Scholar

37. Takasaki K, Kacena MA, Raskind WH, Weiss MJ, Chou ST. GATA1-related cytopenia. Available from https://www.ncbi.nlm.nih.gov/books/NBK1364/. Accessed 2023 December.Search in Google Scholar

38. Norman PC, Tippett P, Beal RW. An Lu(a–b–) phenotype caused by an X-linked recessive gene. Vox Sang 1986;51: 49–52.Search in Google Scholar

39. Singleton BK, Roxby DJ, Stirling JW, et al. A novel GATA1 mutation (Stop414Arg) in a family with the rare X-linked blood group Lu(a–b–) phenotype and mild macrothrombocytic thrombocytopenia. Br J Haematol 2013;161:139–42.Search in Google Scholar

40. International Society for Blood Transfusion. Names for (ISBT_102) GATA1 alleles. Available from https://www.isbtweb.org/resource/gata1.html. Accessed 25 March 2024.Search in Google Scholar

41. Sano R, Nakajima T, Takahashi K, et al. Expression of ABO blood-group genes is dependent upon an erythroid cell-specific regulatory element that is deleted in persons with the B(m) phenotype. Blood 2012;119:5301–10.Search in Google Scholar

42. Möller M, Lee YQ, Vidovic K, et al. Disruption of a GATA1-binding motif upstream of XG/PBDX abolishes Xg(a) expression and resolves the Xg blood group system. Blood 2018;132:334–8.Search in Google Scholar

43. El Nemer W, Rahuel C, Colin Y, Gane P, Cartron JP, Le Van Kim C. Organization of the human LU gene and molecular basis of the Lua/Lub blood group polymorphism. Blood 1997;89: 4608–16.Search in Google Scholar

44. Wu PC, Lee YQ, Möller M, Storry JR, Olsson ML. Elucidation of the low-expressing erythroid CR1 phenotype by bioinformatic mining of the GATA1-driven blood-group regulome. Nature Commun 2023;14:5001.Search in Google Scholar

45. Fennell K, Hoffman R, Yoshida K, et al. Effect on gene expression of three allelic variants in GATA motifs of ABO, RHD, and RHCE regulatory elements. Transfusion 2017;57:2804–8.Search in Google Scholar

46. Tournamille C, Colin Y, Cartron JP, Le Van Kim C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet 1995;10:224–8.Search in Google Scholar

47. Peiper SC, Wang ZX, Neote K, et al. The Duffy antigen/receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. J Exp Med 1995;181:1311–7.Search in Google Scholar

48. Iwamoto S, Li J, Omi T, Ikemoto S, Kajii E. Identification of a novel exon and spliced form of Duffy mRNA that is the predominant transcript in both erythroid and postcapillary venule endothelium. Blood 1996;87:378–85.Search in Google Scholar

49. Yeh CC, Chang CJ, Twu YC, et al. The molecular genetic background leading to the formation of the human erythroid-specific Xg(a)/CD99 blood groups. Blood Adv 2018;2:1854–64.Search in Google Scholar

50. Rowe JA, Moulds JM, Newbold CI, Miller LH. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature 1997;388:292–5.Search in Google Scholar

51. Moulds JM, Zimmerman PA, Doumbo OK, et al. Molecular identification of Knops blood group polymorphisms found in long homologous region D of complement receptor 1. Blood 2001;97:2879–85.Search in Google Scholar

52. McGowan E, Wu P, Lee Y, Ghosh S, Storry J, Olsson M. Disruption of a KLF motif in intron 1 of RHCE*c alleles alters recruitment of transcription factors and causes C/c-related changes of RH gene and protein expression. Vox Sang 2023;118(Suppl 1):24.Search in Google Scholar

eISSN:
1930-3955
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, Laboratory Medicine