This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Mangal, M.; Bansal, S.; Sharma, S.K.; Gupta, R.K. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety. Crit Rev Food Sci Nutr 2016, 56, 1568–1584, doi:10.1080/10408398.2013.782483.MangalM.BansalS.SharmaS.K.GuptaR.K.Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food SafetyCrit Rev Food Sci Nutr2016561568158410.1080/10408398.2013.782483Open DOISearch in Google Scholar
Wang, Y.; Wang, C.; Zhou, Z.; Si, J.; Li, S.; Zeng, Y.; Deng, Y.; Chen, Z. Advances in Simple, Rapid, and Contamination-Free Instantaneous Nucleic Acid Devices for Pathogen Detection. Biosensors (Basel) 2023, 13, 732, doi:10.3390/bios13070732.WangY.WangC.ZhouZ.SiJ.LiS.ZengY.DengY.ChenZ.Advances in Simple, Rapid, and Contamination-Free Instantaneous Nucleic Acid Devices for Pathogen DetectionBiosensors (Basel)20231373210.3390/bios13070732Open DOISearch in Google Scholar
Phys. Rev. Lett. 120, 198001 (2018) - Elastohydrodynamic Lif t at a Soft Wall Available online: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.198001 (accessed on 6 December 2024).Phys. Rev. Lett.1201980012018Elastohydrodynamic Lif t at a Soft Wall Available online: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.198001 (accessed on 6 December 2024).Search in Google Scholar
The Cost-Effectiveness of Point of Care Testing in a General Practice Setting: Results from a Randomised Controlled Trial | BMC Health Services Research | Full Text Available online: https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-10-165 (accessed on 6 December 2024).The Cost-Effectiveness of Point of Care Testing in a General Practice Setting: Results from a Randomised Controlled Trial | BMC Health Services Research | Full TextAvailable online: https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-10-165 (accessed on 6 December 2024).Search in Google Scholar
Kim, K.R.; Yeo, W.-H. Advances in Sensor Developments for Cell Culture Monitoring. BMEMat 2023, 1, e12047, doi:10.1002/bmm2.12047.KimK.R.YeoW.-H.Advances in Sensor Developments for Cell Culture MonitoringBMEMat20231e1204710.1002/bmm2.12047Open DOISearch in Google Scholar
Beltrán-Pavez, C.; Alonso-Palomares, L.A.; Valiente-Echeverría, F.; Gaggero, A.; Soto-Rifo, R.; Barriga, G.P. Accuracy of a RT-qPCR SARS-CoV-2 Detection Assay without Prior RNA Extraction. J Virol Methods 2021, 287, 113969, doi:10.1016/j.jviromet.2020.113969.Beltrán-PavezC.Alonso-PalomaresL.A.Valiente-EcheverríaF.GaggeroA.Soto-RifoR.BarrigaG.P.Accuracy of a RT-qPCR SARS-CoV-2 Detection Assay without Prior RNA ExtractionJ Virol Methods202128711396910.1016/j.jviromet.2020.113969Open DOISearch in Google Scholar
Paul, R.; Ostermann, E.; Wei, Q. Advances in Point-of-Care Nucleic Acid Extraction Technologies for Rapid Diagnosis of Human and Plant Diseases. Biosens Bioelectron 2020, 169, 112592, doi:10.1016/j.bios.2020.112592.PaulR.OstermannE.WeiQ.Advances in Point-of-Care Nucleic Acid Extraction Technologies for Rapid Diagnosis of Human and Plant DiseasesBiosens Bioelectron202016911259210.1016/j.bios.2020.112592Open DOISearch in Google Scholar
Wiraswati, H.L.; Ma’ruf, I.F.; Ekawardhani, S.; Faridah, L.; Laelalugina, A.; Septanto, H.; Djati, I.D.; Gaffar, S.; Awaludin, A. Optimization of Nucleic Acid Extraction Methods for Rapid Detection in Pandemic Situations or Diseases with High Prevalence. Journal of Pharmaceutical Analysis 2023, 13, 1577–1579, doi:10.1016/j.jpha.2023.08.005.WiraswatiH.L.Ma’rufI.F.EkawardhaniS.FaridahL.LaelaluginaA.SeptantoH.DjatiI.D.GaffarS.AwaludinA.Optimization of Nucleic Acid Extraction Methods for Rapid Detection in Pandemic Situations or Diseases with High PrevalenceJournal of Pharmaceutical Analysis2023131577157910.1016/j.jpha.2023.08.005Open DOISearch in Google Scholar
Li, P.; Li, M.; Yue, D.; Chen, H. Solid-phase Extraction Methods for Nucleic Acid Separation. A Review. J of Separation Science 2022, 45, 172–184, doi:10.1002/jssc.202100295.LiP.LiM.YueD.ChenH.Solid-phase Extraction Methods for Nucleic Acid Separation. A ReviewJ of Separation Science20224517218410.1002/jssc.202100295Open DOISearch in Google Scholar
Fan, Y.; Dai, R.; Guan, X.; Lu, S.; Yang, C.; Lv, X.; Li, X. Rapid Automatic Nucleic Acid Purification System Based on Gas–Liquid Immiscible Phase. Journal of Separation Science 2023, 46, 2200801, doi:10.1002/jssc.202200801.FanY.DaiR.GuanX.LuS.YangC.LvX.LiX.Rapid Automatic Nucleic Acid Purification System Based on Gas–Liquid Immiscible PhaseJournal of Separation Science202346220080110.1002/jssc.202200801Open DOISearch in Google Scholar
Wu, Q.; Jin, W.; Zhou, C.; Han, S.; Yang, W.; Zhu, Q.; Jin, Q.; Mu, Y. Integrated Glass Microdevice for Nucleic Acid Purification, Loop-Mediated Isothermal Amplification, and Online Detection. Anal. Chem. 2011, 83, 3336–3342, doi:10.1021/ac103129e.WuQ.JinW.ZhouC.HanS.YangW.ZhuQ.JinQ.MuY.Integrated Glass Microdevice for Nucleic Acid Purification, Loop-Mediated Isothermal Amplification, and Online DetectionAnal. Chem.2011833336334210.1021/ac103129eOpen DOISearch in Google Scholar
Ji, H.M.; Samper, V.; Chen, Y.; Hui, W.C.; Lye, H.J.; Mustafa, F.B.; Lee, A.C.; Cong, L.; Heng, C.K.; Lim, T.M. DNA Purification Silicon Chip. Sensors and Actuators A: Physical 2007, 139, 139–144, doi:10.1016/j.sna.2007.05.033.JiH.M.SamperV.ChenY.HuiW.C.LyeH.J.MustafaF.B.LeeA.C.CongL.HengC.K.LimT.M.DNA Purification Silicon ChipSensors and Actuators A: Physical200713913914410.1016/j.sna.2007.05.033Open DOISearch in Google Scholar
Easley, C.J.; Karlinsey, J.M.; Bienvenue, J.M.; Legendre, L.A.; Roper, M.G.; Feldman, S.H.; Hughes, M.A.; Hewlett, E.L.; Merkel, T.J.; Ferrance, J.P.; et al. A Fully Integrated Microfluidic Genetic Analysis System with Sample-in-Answer-out Capability. Proc Natl Acad Sci U S A 2006, 103, 19272–19277, doi:10.1073/pnas.0604663103.EasleyC.J.KarlinseyJ.M.BienvenueJ.M.LegendreL.A.RoperM.G.FeldmanS.H.HughesM.A.HewlettE.L.MerkelT.J.FerranceJ.P.A Fully Integrated Microfluidic Genetic Analysis System with Sample-in-Answer-out CapabilityProc Natl Acad Sci U S A2006103192721927710.1073/pnas.0604663103Open DOISearch in Google Scholar
Hu, F.; Li, J.; Peng, N.; Li, Z.; Zhang, Z.; Zhao, S.; Duan, M.; Tian, H.; Li, L.; Zhang, P. Rapid Isolation of cfDNA from Large-Volume Whole Blood on a Centrifugal Microfluidic Chip Based on Immiscible Phase Filtration. Analyst 2019, 144, 4162–4174, doi:10.1039/C9AN00493A.HuF.LiJ.PengN.LiZ.ZhangZ.ZhaoS.DuanM.TianH.LiL.ZhangP.Rapid Isolation of cfDNA from Large-Volume Whole Blood on a Centrifugal Microfluidic Chip Based on Immiscible Phase FiltrationAnalyst20191444162417410.1039/C9AN00493AOpen DOISearch in Google Scholar
Jamshaid, T.; Neto, E.T.T.; Eissa, M.M.; Zine, N.; Kunita, M.H.; El-Salhi, A.E.; Elaissari, A. Magnetic Particles: From Preparation to Lab-on-a-Chip, Biosensors, Microsystems and Microfluidics Applications. TrAC Trends in Analytical Chemistry 2016, 79, 344–362, doi:10.1016/j.trac.2015.10.022.JamshaidT.NetoE.T.T.EissaM.M.ZineN.KunitaM.H.El-SalhiA.E.ElaissariA.Magnetic Particles: From Preparation to Lab-on-a-Chip, Biosensors, Microsystems and Microfluidics ApplicationsTrAC Trends in Analytical Chemistry20167934436210.1016/j.trac.2015.10.022Open DOISearch in Google Scholar
Song, H.; Khan, M.; Yu, L.; Wang, Y.; Lin, J.-M.; Hu, Q. Construction of Liquid Crystal-Based Sensors Using Enzyme-Linked Dual-Functional Nucleic Acid on Magnetic Beads. Anal. Chem. 2023, 95, 13385–13390, doi:10.1021/acs.analchem.3c03163.SongH.KhanM.YuL.WangY.LinJ.-M.HuQ.Construction of Liquid Crystal-Based Sensors Using Enzyme-Linked Dual-Functional Nucleic Acid on Magnetic BeadsAnal. Chem.202395133851339010.1021/acs.analchem.3c03163Open DOISearch in Google Scholar
Tang, C.; He, Z.; Liu, H.; Xu, Y.; Huang, H.; Yang, G.; Xiao, Z.; Li, S.; Liu, H.; Deng, Y.; et al. Application of Magnetic Nanoparticles in Nucleic Acid Detection. J Nanobiotechnology 2020, 18, 62, doi:10.1186/s12951-020-00613-6.TangC.HeZ.LiuH.XuY.HuangH.YangG.XiaoZ.LiS.LiuH.DengY.Application of Magnetic Nanoparticles in Nucleic Acid DetectionJ Nanobiotechnology2020186210.1186/s12951-020-00613-6Open DOISearch in Google Scholar
Wu, M.; Huang, Y.; Huang, Y.; Wang, H.; Li, M.; Zhou, Y.; Zhao, H.; Lan, Y.; Wu, Z.; Jia, C.; et al. Droplet Magnetic-Controlled Microfluidic Chip Integrated Nucleic Acid Extraction and Amplification for the Detection of Pathogens and Tumor Mutation Sites. Analytica Chimica Acta 2023, 1271, 341469, doi:10.1016/j.aca.2023.341469.WuM.HuangY.HuangY.WangH.LiM.ZhouY.ZhaoH.LanY.WuZ.JiaC.Droplet Magnetic-Controlled Microfluidic Chip Integrated Nucleic Acid Extraction and Amplification for the Detection of Pathogens and Tumor Mutation SitesAnalytica Chimica Acta20231271341469,10.1016/j.aca.2023.341469Open DOISearch in Google Scholar
Shen, H.; Dong, L.; Gao, Y.; Wang, X.; Dai, X. Integrated Microwell Array-Based Microfluidic Chip with a Hand-Held Smartphone-Controlled Device for Nucleic Acid Detection. Analytical Chemistry 2023, doi:10.1021/acs.analchem.3c03525.ShenH.DongL.GaoY.WangX.DaiX.Integrated Microwell Array-Based Microfluidic Chip with a Hand-Held Smartphone-Controlled Device for Nucleic Acid DetectionAnalytical Chemistry202310.1021/acs.analchem.3c03525Open DOISearch in Google Scholar
Li, J.; Gao, Z.; Jia, C.; Cai, G.; Feng, S.; Wu, M.; Zhao, H.; Yu, J.; Bao, F.; Cong, H.; et al. Simultaneous Detection of Multiple Respiratory Pathogens Using an Integrated Microfluidic Chip. Anal Chem 2024, doi:10.1021/acs.analchem.4c00990.LiJ.GaoZ.JiaC.CaiG.FengS.WuM.ZhaoH.YuJ.BaoF.CongH.Simultaneous Detection of Multiple Respiratory Pathogens Using an Integrated Microfluidic ChipAnal Chem202410.1021/acs.analchem.4c00990Open DOISearch in Google Scholar
Grönland, T.-A.; Rangsten, P.; Nese, M.; Lang, M. Miniaturization of Components and Systems for Space Using MEMS-Technology. Acta Astronautica 2007, 61, 228–233, doi:10.1016/j.actaastro.2007.01.029.GrönlandT.-A.RangstenP.NeseM.LangM.Miniaturization of Components and Systems for Space Using MEMS-TechnologyActa Astronautica20076122823310.1016/j.actaastro.2007.01.029Open DOISearch in Google Scholar
Zhang, Z.; Deng, X.; Zhang, W.; Chen, K.; Su, Y.; Gao, C.; Gong, D.; Zhu, L.; Cai, J. Manipulation of Magnetic Beads for Actively Capturing Vibrio Parahaemolyticus and Nucleic Acid Based on Microfluidic System. Biomicrofluidics 2024, 18, 034104, doi:10.1063/5.0193442.ZhangZ.DengX.ZhangW.ChenK.SuY.GaoC.GongD.ZhuL.CaiJ.Manipulation of Magnetic Beads for Actively Capturing Vibrio Parahaemolyticus and Nucleic Acid Based on Microfluidic SystemBiomicrofluidics20241803410410.1063/5.0193442Open DOISearch in Google Scholar
Li, Y.; Liu, S.; Wang, Y.; Wang, Y.; Li, S.; He, N.; Deng, Y.; Chen, Z. Research on a Magnetic Separation-Based Rapid Nucleic Acid Extraction System and Its Detection Applications. Biosensors 2023, 13, 903, doi:10.3390/bios13100903.LiY.LiuS.WangY.WangY.LiS.HeN.DengY.ChenZ.Research on a Magnetic Separation-Based Rapid Nucleic Acid Extraction System and Its Detection ApplicationsBiosensors20231390310.3390/bios13100903Open DOISearch in Google Scholar
Yang, K.; Zhou, J.; Zhao, J.; Liu, L.; Hua, C.; Hong, C.; Wang, M.; Hu, A.; Zhang, W.; Cui, J.; et al. Mobile Lab: A Novel Pathogen Assay Using the Nucleic Acid Automatic Assay System Assisted by a Self-Contained Microfluidic Cassette and Chitosan Decorating Magnetic Particles. Sensors and Actuators B: Chemical 2024, 419, 136413, doi:10.1016/j.snb.2024.136413.YangK.ZhouJ.ZhaoJ.LiuL.HuaC.HongC.WangM.HuA.ZhangW.CuiJ.Mobile Lab: A Novel Pathogen Assay Using the Nucleic Acid Automatic Assay System Assisted by a Self-Contained Microfluidic Cassette and Chitosan Decorating Magnetic ParticlesSensors and Actuators B: Chemical202441913641310.1016/j.snb.2024.136413Open DOISearch in Google Scholar
Seong, H.; Park, J.; Bae, M.; Shin, S. Rapid and Efficient Extraction of Cell-Free DNA Using Homobifunctional Crosslinkers. Biomedicines 2022, 10, 1883, doi:10.3390/biomedicines10081883.SeongH.ParkJ.BaeM.ShinS.Rapid and Efficient Extraction of Cell-Free DNA Using Homobifunctional CrosslinkersBiomedicines202210188310.3390/biomedicines10081883Open DOISearch in Google Scholar
Pearlman, S.I.; Leelawong, M.; Richardson, K.A.; Adams, N.M.; Russ, P.K.; Pask, M.E.; Wolfe, A.E.; Wessely, C.; Haselton, F.R. Low-Resource Nucleic Acid Extraction Method Enabled by High-Gradient Magnetic Separation. ACS Appl. Mater. Interfaces 2020, 12, 12457–12467, doi:10.1021/acsami.9b21564.PearlmanS.I.LeelawongM.RichardsonK.A.AdamsN.M.RussP.K.PaskM.E.WolfeA.E.WesselyC.HaseltonF.R.Low-Resource Nucleic Acid Extraction Method Enabled by High-Gradient Magnetic SeparationACS Appl. Mater. Interfaces202012124571246710.1021/acsami.9b21564Open DOISearch in Google Scholar
Sciuto, E.L.; Petralia, S.; Calabrese, G.; Conoci, S. An Integrated Biosensor Platform for Extraction and Detection of Nucleic Acids., doi:10.1002/bit.27290.SciutoE.L.PetraliaS.CalabreseG.ConociS.An Integrated Biosensor Platform for Extraction and Detection of Nucleic Acids10.1002/bit.27290Open DOISearch in Google Scholar
Li, S.; Wan, C.; Xiao, Y.; Liu, C.; Zhao, X.; Zhang, Y.; Yuan, H.; Wu, L.; Qian, C.; Li, Y.; et al. Multiple On-Line Active Valves Based Centrifugal Microfluidics for Dynamic Solid-Phase Enrichment and Purification of Viral Nucleic Acid. Lab Chip 2024, 24, 3158–3168, doi:10.1039/D4LC00074A.LiS.WanC.XiaoY.LiuC.ZhaoX.ZhangY.YuanH.WuL.QianC.LiY.Multiple On-Line Active Valves Based Centrifugal Microfluidics for Dynamic Solid-Phase Enrichment and Purification of Viral Nucleic AcidLab Chip2024243158316810.1039/D4LC00074AOpen DOISearch in Google Scholar
Zhao, X.; Huang, Y.; Li, X.; Yang, W.; Lv, Y.; Sun, W.; Huang, J.; Mi, S. Full Integration of Nucleic Acid Extraction and Detection into a Centrifugal Microfluidic Chip Employing Chitosan-Modified Microspheres. Talanta 2022, 250, 123711, doi:10.1016/j.talanta.2022.123711.ZhaoX.HuangY.LiX.YangW.LvY.SunW.HuangJ.MiS.Full Integration of Nucleic Acid Extraction and Detection into a Centrifugal Microfluidic Chip Employing Chitosan-Modified MicrospheresTalanta202225012371110.1016/j.talanta.2022.123711Open DOISearch in Google Scholar
Schneider, L.; Cui, F.; Tripathi, A. Isolation of Target DNA Using Synergistic Magnetic Bead Transport and Electrokinetic Flow. Biomicrofluidics 2021, 15, 024104, doi:10.1063/5.0045307.SchneiderL.CuiF.TripathiA.Isolation of Target DNA Using Synergistic Magnetic Bead Transport and Electrokinetic FlowBiomicrofluidics20211502410410.1063/5.0045307Open DOISearch in Google Scholar
Yamaguchi, A.; Matsuda, K.; Uehara, M.; Honda, T.; Saito, Y. A Novel Automated Device for Rapid Nucleic Acid Extraction Utilizing a Zigzag Motion of Magnetic Silica Beads. Analytica Chimica Acta 2016, 906, 1–6, doi:10.1016/j.aca.2015.10.011.YamaguchiA.MatsudaK.UeharaM.HondaT.SaitoY.A Novel Automated Device for Rapid Nucleic Acid Extraction Utilizing a Zigzag Motion of Magnetic Silica BeadsAnalytica Chimica Acta20169061610.1016/j.aca.2015.10.011Open DOISearch in Google Scholar
Huang, J.; Xia, L.; Xiao, X.; Li, G. A Recyclable PDMS Microfluidic Surface-Enhanced Raman Scattering Cu/AgNP Chip for the Analysis of Sulfadiazine in Aquatic Products. New J. Chem. 2024, 48, 11457–11464, doi:10.1039/D4NJ01825G.HuangJ.XiaL.XiaoX.LiG.A Recyclable PDMS Microfluidic Surface-Enhanced Raman Scattering Cu/AgNP Chip for the Analysis of Sulfadiazine in Aquatic ProductsNew J. Chem.202448114571146410.1039/D4NJ01825GOpen DOISearch in Google Scholar
Lyu, C.; Jiang, Y.; Dai, Z.; Xu, X.; Cai, Y.; Liang, B.; Zhou, C.; Ye, X.; Wang, J. Optimizing Magnetic Separation and Cleaning Module in Fully Automated Chemiluminescence Immunoassay Analyzer Using a Special Arrangement of Spliced Magnets and a Three-Stage Magnetic Bead Collection Method. Magnetochemistry 2024, 10, 75, doi:10.3390/magnetochemistry10100075.LyuC.JiangY.DaiZ.XuX.CaiY.LiangB.ZhouC.YeX.WangJ.Optimizing Magnetic Separation and Cleaning Module in Fully Automated Chemiluminescence Immunoassay Analyzer Using a Special Arrangement of Spliced Magnets and a Three-Stage Magnetic Bead Collection MethodMagnetochemistry2024107510.3390/magnetochemistry10100075Open DOISearch in Google Scholar
Nisar, N.; Shah, R.; Zada, F.; Khan, B.; Aziz, S.; Rehman, N.; Soonmin, H.; Ahmad, N.; Khan, M.; Hanzala Civil Engineering Journal Novel Ni/ZnO Nanocomposites for the Effective Photocatalytic Degradation of Malachite Green Dye. 2024, 10, doi:10.28991/CEJ-2024-010-08-011.NisarN.ShahR.ZadaF.KhanB.AzizS.RehmanN.SoonminH.AhmadN.KhanM.Hanzala Civil Engineering Journal Novel Ni/ZnO Nanocomposites for the Effective Photocatalytic Degradation of Malachite Green Dye20241010.28991/CEJ-2024-010-08-011Open DOISearch in Google Scholar
Zhang, J.; Su, X.; Xu, J.; Wang, J.; Zeng, J.; Li, C.; Chen, W.; Li, T.; Min, X.; Zhang, D.; et al. A Point of Care Platform Based on Microfluidic Chip for Nucleic Acid Extraction in Less than 1 Minute. Biomicrofluidics 2019, 13, 034102, doi:10.1063/1.5088552.ZhangJ.SuX.XuJ.WangJ.ZengJ.LiC.ChenW.LiT.MinX.ZhangD.A Point of Care Platform Based on Microfluidic Chip for Nucleic Acid Extraction in Less than 1 MinuteBiomicrofluidics20191303410210.1063/1.5088552Open DOISearch in Google Scholar
Ji, T.; Liu, Z.; Wang, G.; Guo, X.; Akbar Khan, S.; Lai, C.; Chen, H.; Huang, S.; Xia, S.; Chen, B.; et al. Detection of COVID-19: A Review of the Current Literature and Future Perspectives. Biosens Bioelectron 2020, 166, 112455, doi:10.1016/j.bios.2020.112455.JiT.LiuZ.WangG.GuoX.Akbar KhanS.LaiC.ChenH.HuangS.XiaS.ChenB.Detection of COVID-19: A Review of the Current Literature and Future PerspectivesBiosens Bioelectron202016611245510.1016/j.bios.2020.112455Open DOISearch in Google Scholar
Saiki, R.K.; Gelfand, D.H.; Stoffel, S.; Scharf, S.J.; Higuchi, R.; Horn, G.T.; Mullis, K.B.; Erlich, H.A. Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase. Science 1988, 239, 487–491, doi:10.1126/science.2448875.SaikiR.K.GelfandD.H.StoffelS.ScharfS.J.HiguchiR.HornG.T.MullisK.B.ErlichH.A.Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA PolymeraseScience198823948749110.1126/science.2448875Open DOISearch in Google Scholar
Boehme, C.C.; Nabeta, P.; Hillemann, D.; Nicol, M.P.; Shenai, S.; Krapp, F.; Allen, J.; Tahirli, R.; Blakemore, R.; Rustomjee, R.; et al. Rapid Molecular Detection of Tuberculosis and Rifampin Resistance. N Engl J Med 2010, 363, 1005–1015, doi:10.1056/NEJMoa0907847.BoehmeC.C.NabetaP.HillemannD.NicolM.P.ShenaiS.KrappF.AllenJ.TahirliR.BlakemoreR.RustomjeeR.Rapid Molecular Detection of Tuberculosis and Rifampin ResistanceN Engl J Med20103631005101510.1056/NEJMoa0907847Open DOISearch in Google Scholar
Chen, S.; Sun, Y.; Fan, F.; Chen, S.; Zhang, Y.; Zhang, Y.; Meng, X.; Lin, J.-M. Present Status of Microfluidic PCR Chip in Nucleic Acid Detection and Future Perspective. TrAC Trends in Analytical Chemistry 2022, 157, 116737, doi:10.1016/j.trac.2022.116737.ChenS.SunY.FanF.ChenS.ZhangY.ZhangY.MengX.LinJ.-M.Present Status of Microfluidic PCR Chip in Nucleic Acid Detection and Future PerspectiveTrAC Trends in Analytical Chemistry202215711673710.1016/j.trac.2022.116737Open DOISearch in Google Scholar
Ling, W.; Zhou, W.; Cui, J.; Shen, Z.; Wei, Q.; Chu, X. Experimental Study on the Heating/Cooling and Temperature Uniformity Performance of the Microchannel Temperature Control Device for Nucleic Acid PCR Amplification Reaction of COVID-19. Applied Thermal Engineering 2023, 226, 120342, doi:10.1016/j.applthermaleng.2023.120342.LingW.ZhouW.CuiJ.ShenZ.WeiQ.ChuX.Experimental Study on the Heating/Cooling and Temperature Uniformity Performance of the Microchannel Temperature Control Device for Nucleic Acid PCR Amplification Reaction of COVID-19Applied Thermal Engineering202322612034210.1016/j.applthermaleng.2023.120342Open DOISearch in Google Scholar
İnce, G.T.; Yüksekkaya, M.; Haberal, O.E. Micro-Polymerase Chain Reaction for Point-of-Care Detection and beyond: A Review Microfluidics and Nanofluidics. Microfluid Nanofluid 2023, 27, 68, doi:10.1007/s10404-023-02677-w.İnceG.T.YüksekkayaM.HaberalO.E.Micro-Polymerase Chain Reaction for Point-of-Care Detection and beyond: A Review Microfluidics and NanofluidicsMicrofluid Nanofluid2023276810.1007/s10404-023-02677-wOpen DOISearch in Google Scholar
Huang, S.; An, Y.; Xi, B.; Gong, X.; Chen, Z.; Shao, S.; Ge, S.; Zhang, J.; Zhang, D.; Xia, N. Ultra-Fast, Sensitive and Low-Cost Real-Time PCR System for Nucleic Acid Detection. Lab Chip 2023, 23, 2611–2622, doi:10.1039/D3LC00174A.HuangS.AnY.XiB.GongX.ChenZ.ShaoS.GeS.ZhangJ.ZhangD.XiaN.Ultra-Fast, Sensitive and Low-Cost Real-Time PCR System for Nucleic Acid DetectionLab Chip2023232611262210.1039/D3LC00174AOpen DOISearch in Google Scholar
Qiu, X.; Ge, S.; Gao, P.; Li, K.; Yang, S.; Zhang, S.; Ye, X.; Xia, N.; Qian, S. A Smartphone-Based Point-of-Care Diagnosis of H1N1 with Microfluidic Convection PCR. Microsyst Technol 2017, 23, 2951–2956, doi:10.1007/s00542-016-2979-z.QiuX.GeS.GaoP.LiK.YangS.ZhangS.YeX.XiaN.QianS.A Smartphone-Based Point-of-Care Diagnosis of H1N1 with Microfluidic Convection PCRMicrosyst Technol2017232951295610.1007/s00542-016-2979-zOpen DOISearch in Google Scholar
Li, Y.; Zhang, C.; Xing, D. Integrated Microfluidic Reverse Transcription-Polymerase Chain Reaction for Rapid Detection of Food- or Waterborne Pathogenic Rotavirus. Analytical Biochemistry 2011, 415, 87–96, doi:10.1016/j.ab.2011.04.026.LiY.ZhangC.XingD.Integrated Microfluidic Reverse Transcription-Polymerase Chain Reaction for Rapid Detection of Food- or Waterborne Pathogenic RotavirusAnalytical Biochemistry2011415879610.1016/j.ab.2011.04.026Open DOISearch in Google Scholar
Pham, Q.N.; Trinh, K.T.L.; Tran, N.K.S.; Park, T.-S.; Lee, N.Y. Fabrication of 3D Continuous-Flow Reverse-Transcription Polymerase Chain Reaction Microdevice Integrated with on-Chip Fluorescence Detection for Semi-Quantitative Assessment of Gene Expression. Analyst 2018, 143, 5692–5701, doi:10.1039/c8an01739e.PhamQ.N.TrinhK.T.L.TranN.K.S.ParkT.-S.LeeN.Y.Fabrication of 3D Continuous-Flow Reverse-Transcription Polymerase Chain Reaction Microdevice Integrated with on-Chip Fluorescence Detection for Semi-Quantitative Assessment of Gene ExpressionAnalyst20181435692570110.1039/c8an01739eOpen DOISearch in Google Scholar
You, D.J.; Tran, P.L.; Kwon, H.-J.; Patel, D.; Yoon, J.-Y. Very Quick Reverse Transcription Polymerase Chain Reaction for Detecting 2009 H1N1 Influenza A Using Wire-Guide Droplet Manipulationst. Faraday Discuss 2011, 149, 159–170; discussion 227–245, doi:10.1039/c005326k.YouD.J.TranP.L.KwonH.-J.PatelD.YoonJ.-Y.Very Quick Reverse Transcription Polymerase Chain Reaction for Detecting 2009 H1N1 Influenza A Using Wire-Guide Droplet ManipulationstFaraday Discuss2011149159170discussion 227–24510.1039/c005326kOpen DOISearch in Google Scholar
Ouyang, Y.; Duarte, G.R.M.; Poe, B.L.; Riehl, P.S.; dos Santos, F.M.; Martin-Didonet, C.C.G.; Carrilho, E.; Landers, J.P. A Disposable Laser Print-Cut-Laminate Polyester Microchip for Multiplexed PCR via Infra-Red-Mediated Thermal Control. Analytica Chimica Acta 2015, 901, 59–67, doi:10.1016/j.aca.2015.09.042.OuyangY.DuarteG.R.M.PoeB.L.RiehlP.S.dos SantosF.M.Martin-DidonetC.C.G.CarrilhoE.LandersJ.P.A Disposable Laser Print-Cut-Laminate Polyester Microchip for Multiplexed PCR via Infra-Red-Mediated Thermal ControlAnalytica Chimica Acta2015901596710.1016/j.aca.2015.09.042Open DOISearch in Google Scholar
Shaw, K.J.; Docker, P.T.; Yelland, J.V.; Dyer, C.E.; Greenman, J.; Greenway, G.M.; Haswell, S.J. Rapid PCR Amplification Using a Microfluidic Device with Integrated Microwave Heating and Air Impingement Cooling. Lab Chip 2010, 10, 1725–1728, doi:10.1039/C000357N.ShawK.J.DockerP.T.YellandJ.V.DyerC.E.GreenmanJ.GreenwayG.M.HaswellS.J.Rapid PCR Amplification Using a Microfluidic Device with Integrated Microwave Heating and Air Impingement CoolingLab Chip2010101725172810.1039/C000357NOpen DOISearch in Google Scholar
Chen, X.; Song, L.; Assadsangabi, B.; Fang, J.; Mohamed Ali, M.S.; Takahata, K. Wirelessly Addressable Heater Array for Centrifugal Microfluidics and Escherichia Coli Sterilization. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); July 2013; pp. 5505–5508.ChenX.SongL.AssadsangabiB.FangJ.Mohamed AliM.S.TakahataK.Wirelessly Addressable Heater Array for Centrifugal Microfluidics and Escherichia Coli SterilizationInProceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)July 201355055508Search in Google Scholar
Fernández-Carballo, B.L.; McBeth, C.; McGuiness, I.; Kalashnikov, M.; Baum, C.; Borrós, S.; Sharon, A.; Sauer-Budge, A.F. Continuous-Flow, Microfluidic, qRT-PCR System for RNA Virus Detection. Anal Bioanal Chem 2018, 410, 33–43, doi:10.1007/s00216-017-0689-8.Fernández-CarballoB.L.McBethC.McGuinessI.KalashnikovM.BaumC.BorrósS.SharonA.Sauer-BudgeA.F.Continuous-Flow, Microfluidic, qRT-PCR System for RNA Virus DetectionAnal Bioanal Chem2018410334310.1007/s00216-017-0689-8Open DOISearch in Google Scholar
Qiu, X.; Shu, J.I.; Baysal, O.; Wu, J.; Qian, S.; Ge, S.; Li, K.; Ye, X.; Xia, N.; Yu, D. Real-Time Capillary Convective PCR Based on Horizontal Thermal Convection. Microfluid Nanofluid 2019, 23, 39, doi:10.1007/s10404-019-2207-0.QiuX.ShuJ.I.BaysalO.WuJ.QianS.GeS.LiK.YeX.XiaN.YuD.Real-Time Capillary Convective PCR Based on Horizontal Thermal ConvectionMicrofluid Nanofluid2019233910.1007/s10404-019-2207-0Open DOISearch in Google Scholar
Trinh, K.T.L.; Lee, N.Y. A Portable Microreactor with Minimal Accessories for Polymerase Chain Reaction: Application to the Determination of Foodborne Pathogens. Microchim Acta 2017, 184, 4225–4233, doi:10.1007/s00604-017-2451-5.TrinhK.T.L.LeeN.Y.A Portable Microreactor with Minimal Accessories for Polymerase Chain Reaction: Application to the Determination of Foodborne PathogensMicrochim Acta20171844225423310.1007/s00604-017-2451-5Open DOISearch in Google Scholar
An, Y.-Q.; Huang, S.-L.; Xi, B.-C.; Gong, X.-L.; Ji, J.-H.; Hu, Y.; Ding, Y.-J.; Zhang, D.-X.; Ge, S.-X.; Zhang, J.; et al. Ultrafast Microfluidic PCR Thermocycler for Nucleic Acid Amplification. Micromachines (Basel) 2023, 14, 658, doi:10.3390/mi14030658.AnY.-Q.HuangS.-L.XiB.-C.GongX.-L.JiJ.-H.HuY.DingY.-J.ZhangD.-X.GeS.-X.ZhangJ.Ultrafast Microfluidic PCR Thermocycler for Nucleic Acid AmplificationMicromachines (Basel)20231465810.3390/mi14030658Open DOISearch in Google Scholar
Trauba, J.M.; Wittwer, C.T. Microfluidic Extreme PCR: <1 Minute DNA Amplification in a Thin Film Disposable. Journal of Biomedical Science and Engineering 2017, 10, 219–231, doi:10.4236/jbise.2017.105017.TraubaJ.M.WittwerC.T.Microfluidic Extreme PCR: <1 Minute DNA Amplification in a Thin Film DisposableJournal of Biomedical Science and Engineering20171021923110.4236/jbise.2017.105017Open DOISearch in Google Scholar
Yeom, D.; Kim, J.; Kim, S.; Ahn, S.; Choi, J.; Kim, Y.; Koo, C. A Thermocycler Using a Chip Resistor Heater and a Glass Microchip for a Portable and Rapid Microchip-Based PCR Device. Micromachines (Basel) 2022, 13, 339, doi:10.3390/mi13020339.YeomD.KimJ.KimS.AhnS.ChoiJ.KimY.KooC.A Thermocycler Using a Chip Resistor Heater and a Glass Microchip for a Portable and Rapid Microchip-Based PCR DeviceMicromachines (Basel)20221333910.3390/mi13020339Open DOISearch in Google Scholar
Oyewola, O.M.; Awonusi, A.A.; Ismail, O.S. Performance Optimization of Step-Like Divergence Plenum Air-Cooled Li-Ion Battery Thermal Management System Using Variable-Step-Height Configuration. Emerging Science Journal 2024, 8, 795–814, doi:10.28991/ESJ-2024-08-03-01.OyewolaO.M.AwonusiA.A.IsmailO.S.Performance Optimization of Step-Like Divergence Plenum Air-Cooled Li-Ion Battery Thermal Management System Using Variable-Step-Height ConfigurationEmerging Science Journal2024879581410.28991/ESJ-2024-08-03-01Open DOISearch in Google Scholar
Salman, A.; Carney, H.; Bateson, S.; Ali, Z. Shunting Microfluidic PCR Device for Rapid Bacterial Detection. Talanta 2020, 207, 120303, doi:10.1016/j.talanta.2019.120303.SalmanA.CarneyH.BatesonS.AliZ.Shunting Microfluidic PCR Device for Rapid Bacterial DetectionTalanta202020712030310.1016/j.talanta.2019.120303Open DOISearch in Google Scholar
Petralia, Salvatore & Castagna, Maria Eloisa & Spata, Massimo & Amore, Maria & Conoci, Sabrina. (2016). A Point of Care Real Time PCR Platform Based on Silicon Technology. Biosensors Journal. 5. doi:10.4172/2090-4967.1000136.PetraliaSalvatoreCastagnaMaria EloisaSpataMassimoAmoreMariaConociSabrina2016A Point of Care Real Time PCR Platform Based on Silicon TechnologyBiosensors Journal510.4172/2090-4967.1000136Open DOISearch in Google Scholar
Lim, J.; Jeong, S.; Kim, M.; Lee, J.-H. Battery-Operated Portable PCR System with Enhanced Stability of Pt RTD. PLOS ONE 2019, 14, e0218571, doi:10.1371/journal.pone.0218571.LimJ.JeongS.KimM.LeeJ.-H.Battery-Operated Portable PCR System with Enhanced Stability of Pt RTDPLOS ONE201914e021857110.1371/journal.pone.0218571Open DOISearch in Google Scholar
Yang, Y.; Chen, Y.; Tang, H.; Zong, N.; Jiang, X. Microfluidics for Biomedical Analysis. Small Methods 2020, 4, 1900451, doi:10.1002/smtd.201900451.YangY.ChenY.TangH.ZongN.JiangX.Microfluidics for Biomedical AnalysisSmall Methods20204190045110.1002/smtd.201900451Open DOISearch in Google Scholar
Si, H.; Xu, G.; Jing, F.; Sun, P.; Zhao, D.; Wu, D. A Multi-Volume Microfluidic Device with No Reagent Loss for Low-Cost Digital PCR Application. Sensors and Actuators B: Chemical 2020, 318, 128197, doi:10.1016/j.snb.2020.128197.SiH.XuG.JingF.SunP.ZhaoD.WuD.A Multi-Volume Microfluidic Device with No Reagent Loss for Low-Cost Digital PCR ApplicationSensors and Actuators B: Chemical202031812819710.1016/j.snb.2020.128197Open DOISearch in Google Scholar
Effect of Gadolinium Doping on the Structure of Ce1-xGdxO2-x/2 Solid Solutions Prepared by Ionic Gelation Approach | Ilcheva | Emerging Science Journal Available online: https://www.ijournalse.org/index.php/ESJ/article/view/2504 (accessed on 6 December 2024).Effect of Gadolinium Doping on the Structure of Ce1-xGdxO2-x/2 Solid Solutions Prepared by Ionic Gelation ApproachIlchevaEmerging Science JournalAvailable online: https://www.ijournalse.org/index.php/ESJ/article/view/2504 (accessed on 6 December 2024).Search in Google Scholar
Pumford, E.A.; Lu, J.; Spaczai, I.; Prasetyo, M.E.; Zheng, E.M.; Zhang, H.; Kamei, D.T. Developments in Integrating Nucleic Acid Isothermal Amplification and Detection Systems for Point-of-Care Diagnostics. Biosens Bioelectron 2020, 170, 112674, doi:10.1016/j.bios.2020.112674.PumfordE.A.LuJ.SpaczaiI.PrasetyoM.E.ZhengE.M.ZhangH.KameiD.T.Developments in Integrating Nucleic Acid Isothermal Amplification and Detection Systems for Point-of-Care DiagnosticsBiosens Bioelectron202017011267410.1016/j.bios.2020.112674Open DOISearch in Google Scholar
Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic acids research, 28(12), E63. https://doi.org/10.1093/nar/28.12.e63.NotomiT.OkayamaH.MasubuchiH.YonekawaT.WatanabeK.AminoN.HaseT.2000Loop-mediated isothermal amplification of DNANucleic acids research2812E63https://doi.org/10.1093/nar/28.12.e63.Search in Google Scholar
Rabe, B. A., & Cepko, C. (2020). SARSCoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification. Proceedings of the National Academy of Sciences of the United States of America, 117(39), 24450–24458. https://doi.org/10.1073/pnas.2011221117.RabeB. A.CepkoC.2020SARSCoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purificationProceedings of the National Academy of Sciences of the United States of America117392445024458https://doi.org/10.1073/pnas.2011221117.Search in Google Scholar
Suea-Ngam, A.; Bezinge, L.; Mateescu, B.; Howes, P.D.; deMello, A.J.; Richards, D.A. Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care. ACS Sens 2020, 5, 2701–2723, doi:10.1021/acssensors.0c01488.Suea-NgamA.BezingeL.MateescuB.HowesP.D.deMelloA.J.RichardsD.A.Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-CareACS Sens202052701272310.1021/acssensors.0c01488Open DOISearch in Google Scholar
Jiang, L.; Lan, X.; Ren, L.; Yang, M.; Wei, B.; Wang, Y. Design of a Digital LAMP Detection Platform Based on Droplet Microfluidic Technology. Micromachines (Basel) 2023, 14, 1077, doi:10.3390/mi14051077.JiangL.LanX.RenL.YangM.WeiB.WangY.Design of a Digital LAMP Detection Platform Based on Droplet Microfluidic TechnologyMicromachines (Basel)202314107710.3390/mi14051077Open DOISearch in Google Scholar
Xiao, B.; Zhao, R.; Wang, N.; Zhang, J.; Sun, X.; Huang, F.; Chen, A. Integrating Microneedle DNA Extraction to Hand-Held Microfluidic Colorimetric LAMP Chip System for Meat Adulteration Detection. Food Chem 2023, 411, 135508, doi:10.1016/j.foodchem.2023.135508.XiaoB.ZhaoR.WangN.ZhangJ.SunX.HuangF.ChenA.Integrating Microneedle DNA Extraction to Hand-Held Microfluidic Colorimetric LAMP Chip System for Meat Adulteration DetectionFood Chem202341113550810.1016/j.foodchem.2023.135508Open DOISearch in Google Scholar
El-Tholoth, M.; Bai, H.; Mauk, M.G.; Saif, L.; Bau, H.H. A Portable, 3D Printed, Microfluidic Device for Multiplexed, Real Time, Molecular Detection of the Porcine Epidemic Diarrhea Virus, Transmissible Gastroenteritis Virus, and Porcine Deltacoronavirus at the Point of Need. Lab Chip 2021, 21, 1118–1130, doi:10.1039/d0lc01229g.El-TholothM.BaiH.MaukM.G.SaifL.BauH.H.A Portable, 3D Printed, Microfluidic Device for Multiplexed, Real Time, Molecular Detection of the Porcine Epidemic Diarrhea Virus, Transmissible Gastroenteritis Virus, and Porcine Deltacoronavirus at the Point of NeedLab Chip2021211118113010.1039/d0lc01229gOpen DOISearch in Google Scholar
Loo, J.; Kwok, H.C.; Leung, C.C.H.; Wu, S.Y.; Law, I.L.G.; Cheung, Y.K.; Cheung, Y.Y.; Chin, M.L.; Kwan, P.; Hui, M.; et al. Sample-to-Answer on Molecular Diagnosis of Bacterial Infection Using Integrated Lab-on-a-Disc. Biosens Bioelectron 2017, 93, 212–219, doi:10.1016/j.bios.2016.09.001.LooJ.KwokH.C.LeungC.C.H.WuS.Y.LawI.L.G.CheungY.K.CheungY.Y.ChinM.L.KwanP.HuiM.Sample-to-Answer on Molecular Diagnosis of Bacterial Infection Using Integrated Lab-on-a-DiscBiosens Bioelectron20179321221910.1016/j.bios.2016.09.001Open DOISearch in Google Scholar
Liu, D.; Zhu, Y.; Li, N.; Lu, Y.; Cheng, J.; Xu, Y. A Portable Microfluidic Analyzer for Integrated Bacterial Detection Using Visible Loop-Mediated Amplification. Sensors and Actuators B: Chemical 2020, 310, 127834, doi:10.1016/j.snb.2020.127834.LiuD.ZhuY.LiN.LuY.ChengJ.XuY.A Portable Microfluidic Analyzer for Integrated Bacterial Detection Using Visible Loop-Mediated AmplificationSensors and Actuators B: Chemical202031012783410.1016/j.snb.2020.127834Open DOISearch in Google Scholar
Gansen, A.; Herrick, A.M.; Dimov, I.K.; Lee, L.P.; Chiu, D.T. Digital LAMP in a Sample Self-Digitization (SD) Chip. Lab Chip 2012, 12, 2247–2254, doi:10.1039/C2LC21247A.GansenA.HerrickA.M.DimovI.K.LeeL.P.ChiuD.T.Digital LAMP in a Sample Self-Digitization (SD) ChipLab Chip2012122247225410.1039/C2LC21247AOpen DOISearch in Google Scholar
Rane, T.D.; Chen, L.; Zec, H.C.; Wang, T.-H. Microfluidic Continuous Flow Digital Loop-Mediated Isothermal Amplification (LAMP). Lab Chip 2015, 15, 776–782, doi:10.1039/C4LC01158A.RaneT.D.ChenL.ZecH.C.WangT.-H.Microfluidic Continuous Flow Digital Loop-Mediated Isothermal Amplification (LAMP)Lab Chip20151577678210.1039/C4LC01158AOpen DOISearch in Google Scholar
Xie, M.; Chen, T.; Cai, Z.; Lei, B.; Dong, C. A Digital Microfluidic Platform Coupled with Colorimetric Loop-Mediated Isothermal Amplification for on-Site Visual Diagnosis of Multiple Diseases. Lab Chip 2023, 23, 2778–2788, doi:10.1039/d2lc01156e.XieM.ChenT.CaiZ.LeiB.DongC.A Digital Microfluidic Platform Coupled with Colorimetric Loop-Mediated Isothermal Amplification for on-Site Visual Diagnosis of Multiple DiseasesLab Chip2023232778278810.1039/d2lc01156eOpen DOISearch in Google Scholar
Daposang, E.S.; Hasanah, F.; Silaban, D. PROFILE OF PULMONARY AND EXTRA PULMONARY TUBERCULOSIS USE GENEXPER AT THE PIRNGADI HOSPITAL MEDAN. BIOLINK (Jurnal Biologi Lingkungan Industri Kesehatan) 2021, 8, 44–52, doi:10.31289/biolink.v8i1.4638.DaposangE.S.HasanahF.SilabanD.PROFILE OF PULMONARY AND EXTRA PULMONARY TUBERCULOSIS USE GENEXPER AT THE PIRNGADI HOSPITAL MEDANBIOLINK (Jurnal Biologi Lingkungan Industri Kesehatan)20218445210.31289/biolink.v8i1.4638Open DOISearch in Google Scholar
Smithgall, M.C.; Scherberkova, I.; Whittier, S.; Green, D.A. Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche Cobas for the Rapid Detection of SARS-CoV-2. Journal of Clinical Virology 2020, 128, 104428, doi:10.1016/j.jcv.2020.104428.SmithgallM.C.ScherberkovaI.WhittierS.GreenD.A.Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche Cobas for the Rapid Detection of SARS-CoV-2Journal of Clinical Virology202012810442810.1016/j.jcv.2020.104428Open DOISearch in Google Scholar
Wei, Y.-J.; Zhao, Y.-N.; Zhang, X.; Wei, X.; Chen, M.-L.; Chen, X.-W. Biochemical Analysis Based on Optical Detection Integrated Microfluidic Chip. TrAC Trends in Analytical Chemistry 2023, 158, 116865, doi:10.1016/j.trac.2022.116865.WeiY.-J.ZhaoY.-N.ZhangX.WeiX.ChenM.-L.ChenX.-W.Biochemical Analysis Based on Optical Detection Integrated Microfluidic ChipTrAC Trends in Analytical Chemistry202315811686510.1016/j.trac.2022.116865Open DOISearch in Google Scholar
Zhang, L.; Huang, B.; Jin, J.; Li, Y.; Gu, N. Advances in Nanoprobes-Based Immunoassays. BMEMat 2024, 2, e12057, doi:10.1002/bmm2.12057.ZhangL.HuangB.JinJ.LiY.GuN.Advances in Nanoprobes-Based ImmunoassaysBMEMat20242e1205710.1002/bmm2.12057Open DOISearch in Google Scholar
Xu, J.; Tang, Q.; Zhang, R.; Chen, H.; Khoo, B.L.; Zhang, X.; Chen, Y.; Yan, H.; Li, J.; Shao, H.; et al. Sensitive Detection of microRNAs Using Polyadenine-Mediated Fluorescent Spherical Nucleic Acids and a Microfluidic Electrokinetic Signal Amplification Chip. J Pharm Anal 2022, 12, 808–813, doi:10.1016/j.jpha.2022.05.009.XuJ.TangQ.ZhangR.ChenH.KhooB.L.ZhangX.ChenY.YanH.LiJ.ShaoH.Sensitive Detection of microRNAs Using Polyadenine-Mediated Fluorescent Spherical Nucleic Acids and a Microfluidic Electrokinetic Signal Amplification ChipJ Pharm Anal20221280881310.1016/j.jpha.2022.05.009Open DOISearch in Google Scholar
Yao, Y.; Zhao, N.; Jing, W.; Liu, Q.; Lu, H.; Zhao, W.; Zhao, W.; Yuan, Z.; Xia, H.; Sui, G. A Self-Powered Rapid Loading Microfluidic Chip for Vector-Borne Viruses Detection Using RT-LAMP. Sensors and Actuators B: Chemical 2021, 333, 129521, doi:10.1016/j.snb.2021.129521.YaoY.ZhaoN.JingW.LiuQ.LuH.ZhaoW.ZhaoW.YuanZ.XiaH.SuiG.A Self-Powered Rapid Loading Microfluidic Chip for Vector-Borne Viruses Detection Using RT-LAMPSensors and Actuators B: Chemical202133312952110.1016/j.snb.2021.129521Open DOISearch in Google Scholar
Jiang, K.; Wu, J.; Kim, J.-E.; An, S.; Nam, J.-M.; Peng, Y.-K.; Lee, J.-H. Plasmonic Cross-Linking Colorimetric PCR for Simple and Sensitive Nucleic Acid Detection. Nano Lett. 2023, 23, 3897–3903, doi:10.1021/acs.nanolett.3c00533.JiangK.WuJ.KimJ.-E.AnS.NamJ.-M.PengY.-K.LeeJ.-H.Plasmonic Cross-Linking Colorimetric PCR for Simple and Sensitive Nucleic Acid DetectionNano Lett.2023233897390310.1021/acs.nanolett.3c00533Open DOISearch in Google Scholar
Fu, L.; Qian, Y.; Zhou, J.; Zheng, L.; Wang, Y. Fluorescence-Based Quantitative Platform for Ultrasensitive Food Allergen Detection: From Immunoassays to DNA Sensors. Comprehensive Reviews in Food Science and Food Safety 2020, 19, 3343–3364, doi:10.1111/1541-4337.12641.FuL.QianY.ZhouJ.ZhengL.WangY.Fluorescence-Based Quantitative Platform for Ultrasensitive Food Allergen Detection: From Immunoassays to DNA SensorsComprehensive Reviews in Food Science and Food Safety2020193343336410.1111/1541-4337.12641Open DOISearch in Google Scholar
Surucu, O.; Öztürk, E.; Kuralay, F. Nucleic Acid Integrated Technologies for Electrochemical Point-of-Care Diagnostics: A Comprehensive Review. Electroanalysis 2022, 34, 148–160, doi:10.1002/elan.202100309.SurucuO.ÖztürkE.KuralayF.Nucleic Acid Integrated Technologies for Electrochemical Point-of-Care Diagnostics: A Comprehensive ReviewElectroanalysis20223414816010.1002/elan.202100309Open DOISearch in Google Scholar
Zhou, P.; He, H.; Ma, H.; Wang, S.; Hu, S. A Review of Optical Imaging Technologies for Microfluidics. Micromachines 2022, 13, 274, doi:10.3390/mi13020274.ZhouP.HeH.MaH.WangS.HuS.A Review of Optical Imaging Technologies for MicrofluidicsMicromachines20221327410.3390/mi13020274Open DOISearch in Google Scholar
Katzmeier, F.; Aufinger, L.; Dupin, A.; Quintero, J.; Lenz, M.; Bauer, L.; Klumpe, S.; Sherpa, D.; Dürr, B.; Honemann, M.; et al. A Low-Cost Fluorescence Reader for in Vitro Transcription and Nucleic Acid Detection with Cas13a. PLoS One 2019, 14, e0220091, doi:10.1371/journal.pone.0220091.KatzmeierF.AufingerL.DupinA.QuinteroJ.LenzM.BauerL.KlumpeS.SherpaD.DürrB.HonemannM.A Low-Cost Fluorescence Reader for in Vitro Transcription and Nucleic Acid Detection with Cas13aPLoS One201914e022009110.1371/journal.pone.0220091Open DOISearch in Google Scholar
Spibey, C.A.; Jackson, P.; Herick, K. A Unique Charge-Coupled Device/Xenon Arc Lamp Based Imaging System for the Accurate Detection and Quantitation of Multicolour Fluorescence. ELECTROPHORESIS 2001, 22, 829–836, doi:10.1002/1522-2683()22:5<829::AID-ELPS829>3.0.CO;2-U.SpibeyC.A.JacksonP.HerickK.A Unique Charge-Coupled Device/Xenon Arc Lamp Based Imaging System for the Accurate Detection and Quantitation of Multicolour FluorescenceELECTROPHORESIS20012282983610.1002/1522-2683()22:5<829::AID-ELPS829>3.0.CO;2-UOpen DOISearch in Google Scholar
Chen, P.; Pan, D.; Mao, Z. Fluorescence Measured Using a Field-Portable Laser Fluorometer as a Proxy for CDOM Absorption. Estuarine, Coastal and Shelf Science 2014, 146, 33–41, doi:10.1016/j.ecss.2014.05.010.ChenP.PanD.MaoZ.Fluorescence Measured Using a Field-Portable Laser Fluorometer as a Proxy for CDOM AbsorptionEstuarine, Coastal and Shelf Science2014146334110.1016/j.ecss.2014.05.010Open DOISearch in Google Scholar
Velpula, R.T.; Jain, B.; Philip, M.R.; Nguyen, H.D.; Wang, R.; Nguyen, H.P.T. Epitaxial Growth and Characterization of AlInN-Based Core-Shell Nanowire Light Emitting Diodes Operating in the Ultraviolet Spectrum. Sci Rep 2020, 10, 2547, doi:10.1038/s41598-020-59442-0.VelpulaR.T.JainB.PhilipM.R.NguyenH.D.WangR.NguyenH.P.T.Epitaxial Growth and Characterization of AlInN-Based Core-Shell Nanowire Light Emitting Diodes Operating in the Ultraviolet SpectrumSci Rep202010254710.1038/s41598-020-59442-0Open DOISearch in Google Scholar
Baeg, K.-J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y.-Y. Organic Light Detectors: Photodiodes and Phototransistors. Adv Mater 2013, 25, 4267–4295, doi:10.1002/adma.201204979.BaegK.-J.BindaM.NataliD.CaironiM.NohY.-Y.Organic Light Detectors: Photodiodes and PhototransistorsAdv Mater2013254267429510.1002/adma.201204979Open DOISearch in Google Scholar
Fang, Y.; Wang, Y.; Su, X.; Liu, H.; Chen, H.; Chen, Z.; Jin, L.; He, N. A Miniaturized and Integrated Dual-Channel Fluorescence Module for Multiplex Real-Time PCR in the Portable Nucleic Acid Detection System. Front. Bioeng. Biotechnol. 2022, 10, doi:10.3389/fbioe.2022.996456.FangY.WangY.SuX.LiuH.ChenH.ChenZ.JinL.HeN.A Miniaturized and Integrated Dual-Channel Fluorescence Module for Multiplex Real-Time PCR in the Portable Nucleic Acid Detection SystemFront. Bioeng. Biotechnol.20221010.3389/fbioe.2022.996456Open DOISearch in Google Scholar
Wang, Y.; Fang, Y.; Liu, H.; Su, X.; Chen, Z.; Li, S.; He, N. A Highly Integrated and Diminutive Fluorescence Detector for Point-of-Care Testing: Dual Negative Feedback Light-Emitting Diode (LED) Drive and Photoelectric Processing Circuits Design and Implementation. Biosensors (Basel) 2022, 12, 764, doi:10.3390/bios12090764.WangY.FangY.LiuH.SuX.ChenZ.LiS.HeN.A Highly Integrated and Diminutive Fluorescence Detector for Point-of-Care Testing: Dual Negative Feedback Light-Emitting Diode (LED) Drive and Photoelectric Processing Circuits Design and ImplementationBiosensors (Basel)20221276410.3390/bios12090764Open DOISearch in Google Scholar
Zhu, Y.; Tong, X.; Wei, Q.; Cai, G.; Cao, Y.; Tong, C.; Shi, S.; Wang, F. 3D Origami Paper-Based Ratiometric Fluorescent Microfluidic Device for Visual Point-of-Care Detection of Alkaline Phosphatase and Butyrylcholinesterase. Biosensors and Bioelectronics 2022, 196, 113691, doi:10.1016/j.bios.2021.113691.ZhuY.TongX.WeiQ.CaiG.CaoY.TongC.ShiS.WangF.3D Origami Paper-Based Ratiometric Fluorescent Microfluidic Device for Visual Point-of-Care Detection of Alkaline Phosphatase and ButyrylcholinesteraseBiosensors and Bioelectronics202219611369110.1016/j.bios.2021.113691Open DOISearch in Google Scholar
Mumtaz, Z.; Rashid, Z.; Ali, A.; Arif, A.; Ameen, F.; AlTami, M.S.; Yousaf, M.Z. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches. Biosensors 2023, 13, 584, doi:10.3390/bios13060584.MumtazZ.RashidZ.AliA.ArifA.AmeenF.AlTamiM.S.YousafM.Z.Prospects of Microfluidic Technology in Nucleic Acid Detection ApproachesBiosensors20231358410.3390/bios13060584Open DOISearch in Google Scholar
Walker, F.M.; Hsieh, K. Advances in Directly Amplifying Nucleic Acids from Complex Samples. Biosensors 2019, 9, 117, doi:10.3390/bios9040117.WalkerF.M.HsiehK.Advances in Directly Amplifying Nucleic Acids from Complex SamplesBiosensors2019911710.3390/bios9040117Open DOISearch in Google Scholar
Li, Z.; Bai, Y.; You, M.; Hu, J.; Yao, C.; Cao, L.; Xu, F. Fully Integrated Microfluidic Devices for Qualitative, Quantitative and Digital Nucleic Acids Testing at Point of Care. Biosensors and Bioelectronics 2021, 177, 112952, doi:10.1016/j.bios.2020.112952.LiZ.BaiY.YouM.HuJ.YaoC.CaoL.XuF.Fully Integrated Microfluidic Devices for Qualitative, Quantitative and Digital Nucleic Acids Testing at Point of CareBiosensors and Bioelectronics202117711295210.1016/j.bios.2020.112952Open DOISearch in Google Scholar
Taylor, C.D.; Gully, B.; Sánchez, A.N.; Rode, E.; Agarwal, A.S. Towards Materials Sustainability through Materials Stewardship. Sustainability 2016, 8, 1001, doi:10.3390/su8101001.TaylorC.D.GullyB.SánchezA.N.RodeE.AgarwalA.S.Towards Materials Sustainability through Materials StewardshipSustainability20168100110.3390/su8101001Open DOISearch in Google Scholar
Human – Computer Interface Design Can Reduce Misperceptions of Feedback - Howie - 2000 - System Dynamics Review - Wiley Online Library Available online: https://onlinelibrary.wiley.com/doi/10.1002/1099-1727(200023)16:3%3C151::AIDSDR191%3E3.0.CO;2-0 (accessed on 6 December 2024).Human – Computer Interface Design Can Reduce Misperceptions of Feedback - Howie2000System Dynamics ReviewWiley Online LibraryAvailable online: https://onlinelibrary.wiley.com/doi/10.1002/1099-1727(200023)16:3%3C151::AIDSDR191%3E3.0.CO;2-0 (accessed on 6 December 2024).Search in Google Scholar
POCT Analysts’ Perspective: Practices and Wants for Improvement | The Journal of Applied Laborator y Medicine | Oxford Academic Available online: https://academic.oup.com/jalm/article/5/3/480/5827435?login=false (accessed on 6 December 2024).POCT Analysts’ Perspective: Practices and Wants for ImprovementThe Journal of Applied Laborator y MedicineOxford AcademicAvailable online: https://academic.oup.com/jalm/article/5/3/480/5827435?login=false (accessed on 6 December 2024).Search in Google Scholar
Point-of-Care Testing (POCT) and IT Security Concepts Available online: https://www.degruyter.com/document/doi/10.1515/labmed-2019-0199/html (accessed on 6 December 2024).Point-of-Care Testing (POCT) and IT Security ConceptsAvailable online: https://www.degruyter.com/document/doi/10.1515/labmed-2019-0199/html (accessed on 6 December 2024).Search in Google Scholar
Jinjin L.U.; Yongxin S.; Yuan T.; Tong H.O.U. The Flow Pump Control System Design Applied to Microfluidic Experimental Platform. sykxyjs 2023, 21, 50–56, doi:10.12179/1672-4550.20220641.JinjinL.U.YongxinS.YuanT.TongH.O.U.The Flow Pump Control System Design Applied to Microfluidic Experimental Platformsykxyjs202321505610.12179/1672-4550.20220641Open DOISearch in Google Scholar
Liu, D.; Wang, Y.; Li, X.; Li, M.; Wu, Q.; Song, Y.; Zhu, Z.; Yang, C. Integrated Microfluidic Devices for in Vitro Diagnostics at Point of Care., doi:10.1002/agt2.184.LiuD.WangY.LiX.LiM.WuQ.SongY.ZhuZ.YangC.Integrated Microfluidic Devices for in Vitro Diagnostics at Point of Care10.1002/agt2.184Open DOISearch in Google Scholar
Xing, G.; Ai, J.; Wang, N.; Pu, Q. Recent Progress of Smartphone-Assisted Microfluidic Sensors for Point of Care Testing. TrAC Trends in Analytical Chemistry 2022, 157, 116792, doi:10.1016/j.trac.2022.116792.XingG.AiJ.WangN.PuQ.Recent Progress of Smartphone-Assisted Microfluidic Sensors for Point of Care TestingTrAC Trends in Analytical Chemistry202215711679210.1016/j.trac.2022.116792Open DOISearch in Google Scholar
Zhou, D.; Zhang, Z.; Li, Y.; Ma, T.; He, H.; Li, H. Intelligent Textiles Make Life Wirelessly Energetic by Coupling Radiation Energy and Human. BMEMat 2024, 2, e12090, doi:10.1002/bmm2.12090.ZhouD.ZhangZ.LiY.MaT.HeH.LiH.Intelligent Textiles Make Life Wirelessly Energetic by Coupling Radiation Energy and HumanBMEMat20242e1209010.1002/bmm2.12090Open DOISearch in Google Scholar
Sachdeva, S.; Davis, R.W.; Saha, A.K. Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions. Front. Bioeng. Biotechnol. 2021, 8, doi:10.3389/fbioe.2020.602659.SachdevaS.DavisR.W.SahaA.K.Microfluidic Point-of-Care Testing: Commercial Landscape and Future DirectionsFront. Bioeng. Biotechnol.2021810.3389/fbioe.2020.602659Open DOISearch in Google Scholar
Wiencek, J.; Nichols, J. Issues in the Practical Implementation of POCT: Overcoming Challenges. Expert Review of Molecular Diagnostics 2016.WiencekJ.NicholsJ.Issues in the Practical Implementation of POCT: Overcoming ChallengesExpert Review of Molecular Diagnostics2016Search in Google Scholar