Accès libre

Research on real-time nucleic acid detection device based on microfluidic technology

, , , ,  et   
27 mars 2025
À propos de cet article

Citez
Télécharger la couverture

Mangal, M.; Bansal, S.; Sharma, S.K.; Gupta, R.K. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety. Crit Rev Food Sci Nutr 2016, 56, 1568–1584, doi:10.1080/10408398.2013.782483. MangalM. BansalS. SharmaS.K. GuptaR.K. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety Crit Rev Food Sci Nutr 2016 56 1568 1584 10.1080/10408398.2013.782483 Open DOISearch in Google Scholar

Wang, Y.; Wang, C.; Zhou, Z.; Si, J.; Li, S.; Zeng, Y.; Deng, Y.; Chen, Z. Advances in Simple, Rapid, and Contamination-Free Instantaneous Nucleic Acid Devices for Pathogen Detection. Biosensors (Basel) 2023, 13, 732, doi:10.3390/bios13070732. WangY. WangC. ZhouZ. SiJ. LiS. ZengY. DengY. ChenZ. Advances in Simple, Rapid, and Contamination-Free Instantaneous Nucleic Acid Devices for Pathogen Detection Biosensors (Basel) 2023 13 732 10.3390/bios13070732 Open DOISearch in Google Scholar

Phys. Rev. Lett. 120, 198001 (2018) - Elastohydrodynamic Lif t at a Soft Wall Available online: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.198001 (accessed on 6 December 2024). Phys. Rev. Lett. 120 198001 2018 Elastohydrodynamic Lif t at a Soft Wall Available online: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.198001 (accessed on 6 December 2024). Search in Google Scholar

The Cost-Effectiveness of Point of Care Testing in a General Practice Setting: Results from a Randomised Controlled Trial | BMC Health Services Research | Full Text Available online: https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-10-165 (accessed on 6 December 2024). The Cost-Effectiveness of Point of Care Testing in a General Practice Setting: Results from a Randomised Controlled Trial | BMC Health Services Research | Full Text Available online: https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-10-165 (accessed on 6 December 2024). Search in Google Scholar

Yeh, E.-C.; Fu, C.-C.; Hu, L.; Thakur, R.; Feng, J.; Lee, L.P. Self-Powered Integrated Microfluidic Point-of-Care Low-Cost Enabling (SIMPLE) Chip. Sci Adv 2017, 3, e1501645, doi:10.1126/sciadv.1501645. YehE.-C. FuC.-C. HuL. ThakurR. FengJ. LeeL.P. Self-Powered Integrated Microfluidic Point-of-Care Low-Cost Enabling (SIMPLE) Chip Sci Adv 2017 3 e1501645 10.1126/sciadv.1501645 Open DOISearch in Google Scholar

Kim, K.R.; Yeo, W.-H. Advances in Sensor Developments for Cell Culture Monitoring. BMEMat 2023, 1, e12047, doi:10.1002/bmm2.12047. KimK.R. YeoW.-H. Advances in Sensor Developments for Cell Culture Monitoring BMEMat 2023 1 e12047 10.1002/bmm2.12047 Open DOISearch in Google Scholar

Beltrán-Pavez, C.; Alonso-Palomares, L.A.; Valiente-Echeverría, F.; Gaggero, A.; Soto-Rifo, R.; Barriga, G.P. Accuracy of a RT-qPCR SARS-CoV-2 Detection Assay without Prior RNA Extraction. J Virol Methods 2021, 287, 113969, doi:10.1016/j.jviromet.2020.113969. Beltrán-PavezC. Alonso-PalomaresL.A. Valiente-EcheverríaF. GaggeroA. Soto-RifoR. BarrigaG.P. Accuracy of a RT-qPCR SARS-CoV-2 Detection Assay without Prior RNA Extraction J Virol Methods 2021 287 113969 10.1016/j.jviromet.2020.113969 Open DOISearch in Google Scholar

Paul, R.; Ostermann, E.; Wei, Q. Advances in Point-of-Care Nucleic Acid Extraction Technologies for Rapid Diagnosis of Human and Plant Diseases. Biosens Bioelectron 2020, 169, 112592, doi:10.1016/j.bios.2020.112592. PaulR. OstermannE. WeiQ. Advances in Point-of-Care Nucleic Acid Extraction Technologies for Rapid Diagnosis of Human and Plant Diseases Biosens Bioelectron 2020 169 112592 10.1016/j.bios.2020.112592 Open DOISearch in Google Scholar

Abraham, G.R.; Chaderjian, A.S.; Nguyen, A.B.N.; Wilken, S.; Saleh, O.A. Nucleic Acid Liquids. Rep. Prog. Phys. 2024, 87, 066601, doi:10.1088/1361-6633/ad4662. AbrahamG.R. ChaderjianA.S. NguyenA.B.N. WilkenS. SalehO.A. Nucleic Acid Liquids Rep. Prog. Phys. 2024 87 066601 10.1088/1361-6633/ad4662 Open DOISearch in Google Scholar

Wiraswati, H.L.; Ma’ruf, I.F.; Ekawardhani, S.; Faridah, L.; Laelalugina, A.; Septanto, H.; Djati, I.D.; Gaffar, S.; Awaludin, A. Optimization of Nucleic Acid Extraction Methods for Rapid Detection in Pandemic Situations or Diseases with High Prevalence. Journal of Pharmaceutical Analysis 2023, 13, 1577–1579, doi:10.1016/j.jpha.2023.08.005. WiraswatiH.L. Ma’rufI.F. EkawardhaniS. FaridahL. LaelaluginaA. SeptantoH. DjatiI.D. GaffarS. AwaludinA. Optimization of Nucleic Acid Extraction Methods for Rapid Detection in Pandemic Situations or Diseases with High Prevalence Journal of Pharmaceutical Analysis 2023 13 1577 1579 10.1016/j.jpha.2023.08.005 Open DOISearch in Google Scholar

Li, P.; Li, M.; Yue, D.; Chen, H. Solid-phase Extraction Methods for Nucleic Acid Separation. A Review. J of Separation Science 2022, 45, 172–184, doi:10.1002/jssc.202100295. LiP. LiM. YueD. ChenH. Solid-phase Extraction Methods for Nucleic Acid Separation. A Review J of Separation Science 2022 45 172 184 10.1002/jssc.202100295 Open DOISearch in Google Scholar

Fan, Y.; Dai, R.; Guan, X.; Lu, S.; Yang, C.; Lv, X.; Li, X. Rapid Automatic Nucleic Acid Purification System Based on Gas–Liquid Immiscible Phase. Journal of Separation Science 2023, 46, 2200801, doi:10.1002/jssc.202200801. FanY. DaiR. GuanX. LuS. YangC. LvX. LiX. Rapid Automatic Nucleic Acid Purification System Based on Gas–Liquid Immiscible Phase Journal of Separation Science 2023 46 2200801 10.1002/jssc.202200801 Open DOISearch in Google Scholar

Wu, Q.; Jin, W.; Zhou, C.; Han, S.; Yang, W.; Zhu, Q.; Jin, Q.; Mu, Y. Integrated Glass Microdevice for Nucleic Acid Purification, Loop-Mediated Isothermal Amplification, and Online Detection. Anal. Chem. 2011, 83, 3336–3342, doi:10.1021/ac103129e. WuQ. JinW. ZhouC. HanS. YangW. ZhuQ. JinQ. MuY. Integrated Glass Microdevice for Nucleic Acid Purification, Loop-Mediated Isothermal Amplification, and Online Detection Anal. Chem. 2011 83 3336 3342 10.1021/ac103129e Open DOISearch in Google Scholar

Ji, H.M.; Samper, V.; Chen, Y.; Hui, W.C.; Lye, H.J.; Mustafa, F.B.; Lee, A.C.; Cong, L.; Heng, C.K.; Lim, T.M. DNA Purification Silicon Chip. Sensors and Actuators A: Physical 2007, 139, 139–144, doi:10.1016/j.sna.2007.05.033. JiH.M. SamperV. ChenY. HuiW.C. LyeH.J. MustafaF.B. LeeA.C. CongL. HengC.K. LimT.M. DNA Purification Silicon Chip Sensors and Actuators A: Physical 2007 139 139 144 10.1016/j.sna.2007.05.033 Open DOISearch in Google Scholar

Easley, C.J.; Karlinsey, J.M.; Bienvenue, J.M.; Legendre, L.A.; Roper, M.G.; Feldman, S.H.; Hughes, M.A.; Hewlett, E.L.; Merkel, T.J.; Ferrance, J.P.; et al. A Fully Integrated Microfluidic Genetic Analysis System with Sample-in-Answer-out Capability. Proc Natl Acad Sci U S A 2006, 103, 19272–19277, doi:10.1073/pnas.0604663103. EasleyC.J. KarlinseyJ.M. BienvenueJ.M. LegendreL.A. RoperM.G. FeldmanS.H. HughesM.A. HewlettE.L. MerkelT.J. FerranceJ.P. A Fully Integrated Microfluidic Genetic Analysis System with Sample-in-Answer-out Capability Proc Natl Acad Sci U S A 2006 103 19272 19277 10.1073/pnas.0604663103 Open DOISearch in Google Scholar

Hu, F.; Li, J.; Peng, N.; Li, Z.; Zhang, Z.; Zhao, S.; Duan, M.; Tian, H.; Li, L.; Zhang, P. Rapid Isolation of cfDNA from Large-Volume Whole Blood on a Centrifugal Microfluidic Chip Based on Immiscible Phase Filtration. Analyst 2019, 144, 4162–4174, doi:10.1039/C9AN00493A. HuF. LiJ. PengN. LiZ. ZhangZ. ZhaoS. DuanM. TianH. LiL. ZhangP. Rapid Isolation of cfDNA from Large-Volume Whole Blood on a Centrifugal Microfluidic Chip Based on Immiscible Phase Filtration Analyst 2019 144 4162 4174 10.1039/C9AN00493A Open DOISearch in Google Scholar

Jamshaid, T.; Neto, E.T.T.; Eissa, M.M.; Zine, N.; Kunita, M.H.; El-Salhi, A.E.; Elaissari, A. Magnetic Particles: From Preparation to Lab-on-a-Chip, Biosensors, Microsystems and Microfluidics Applications. TrAC Trends in Analytical Chemistry 2016, 79, 344–362, doi:10.1016/j.trac.2015.10.022. JamshaidT. NetoE.T.T. EissaM.M. ZineN. KunitaM.H. El-SalhiA.E. ElaissariA. Magnetic Particles: From Preparation to Lab-on-a-Chip, Biosensors, Microsystems and Microfluidics Applications TrAC Trends in Analytical Chemistry 2016 79 344 362 10.1016/j.trac.2015.10.022 Open DOISearch in Google Scholar

Song, H.; Khan, M.; Yu, L.; Wang, Y.; Lin, J.-M.; Hu, Q. Construction of Liquid Crystal-Based Sensors Using Enzyme-Linked Dual-Functional Nucleic Acid on Magnetic Beads. Anal. Chem. 2023, 95, 13385–13390, doi:10.1021/acs.analchem.3c03163. SongH. KhanM. YuL. WangY. LinJ.-M. HuQ. Construction of Liquid Crystal-Based Sensors Using Enzyme-Linked Dual-Functional Nucleic Acid on Magnetic Beads Anal. Chem. 2023 95 13385 13390 10.1021/acs.analchem.3c03163 Open DOISearch in Google Scholar

Tang, C.; He, Z.; Liu, H.; Xu, Y.; Huang, H.; Yang, G.; Xiao, Z.; Li, S.; Liu, H.; Deng, Y.; et al. Application of Magnetic Nanoparticles in Nucleic Acid Detection. J Nanobiotechnology 2020, 18, 62, doi:10.1186/s12951-020-00613-6. TangC. HeZ. LiuH. XuY. HuangH. YangG. XiaoZ. LiS. LiuH. DengY. Application of Magnetic Nanoparticles in Nucleic Acid Detection J Nanobiotechnology 2020 18 62 10.1186/s12951-020-00613-6 Open DOISearch in Google Scholar

Wu, M.; Huang, Y.; Huang, Y.; Wang, H.; Li, M.; Zhou, Y.; Zhao, H.; Lan, Y.; Wu, Z.; Jia, C.; et al. Droplet Magnetic-Controlled Microfluidic Chip Integrated Nucleic Acid Extraction and Amplification for the Detection of Pathogens and Tumor Mutation Sites. Analytica Chimica Acta 2023, 1271, 341469, doi:10.1016/j.aca.2023.341469. WuM. HuangY. HuangY. WangH. LiM. ZhouY. ZhaoH. LanY. WuZ. JiaC. Droplet Magnetic-Controlled Microfluidic Chip Integrated Nucleic Acid Extraction and Amplification for the Detection of Pathogens and Tumor Mutation Sites Analytica Chimica Acta 2023 1271 341469, 10.1016/j.aca.2023.341469 Open DOISearch in Google Scholar

Shen, H.; Dong, L.; Gao, Y.; Wang, X.; Dai, X. Integrated Microwell Array-Based Microfluidic Chip with a Hand-Held Smartphone-Controlled Device for Nucleic Acid Detection. Analytical Chemistry 2023, doi:10.1021/acs.analchem.3c03525. ShenH. DongL. GaoY. WangX. DaiX. Integrated Microwell Array-Based Microfluidic Chip with a Hand-Held Smartphone-Controlled Device for Nucleic Acid Detection Analytical Chemistry 2023 10.1021/acs.analchem.3c03525 Open DOISearch in Google Scholar

Li, J.; Gao, Z.; Jia, C.; Cai, G.; Feng, S.; Wu, M.; Zhao, H.; Yu, J.; Bao, F.; Cong, H.; et al. Simultaneous Detection of Multiple Respiratory Pathogens Using an Integrated Microfluidic Chip. Anal Chem 2024, doi:10.1021/acs.analchem.4c00990. LiJ. GaoZ. JiaC. CaiG. FengS. WuM. ZhaoH. YuJ. BaoF. CongH. Simultaneous Detection of Multiple Respiratory Pathogens Using an Integrated Microfluidic Chip Anal Chem 2024 10.1021/acs.analchem.4c00990 Open DOISearch in Google Scholar

Grönland, T.-A.; Rangsten, P.; Nese, M.; Lang, M. Miniaturization of Components and Systems for Space Using MEMS-Technology. Acta Astronautica 2007, 61, 228–233, doi:10.1016/j.actaastro.2007.01.029. GrönlandT.-A. RangstenP. NeseM. LangM. Miniaturization of Components and Systems for Space Using MEMS-Technology Acta Astronautica 2007 61 228 233 10.1016/j.actaastro.2007.01.029 Open DOISearch in Google Scholar

Zhang, Z.; Deng, X.; Zhang, W.; Chen, K.; Su, Y.; Gao, C.; Gong, D.; Zhu, L.; Cai, J. Manipulation of Magnetic Beads for Actively Capturing Vibrio Parahaemolyticus and Nucleic Acid Based on Microfluidic System. Biomicrofluidics 2024, 18, 034104, doi:10.1063/5.0193442. ZhangZ. DengX. ZhangW. ChenK. SuY. GaoC. GongD. ZhuL. CaiJ. Manipulation of Magnetic Beads for Actively Capturing Vibrio Parahaemolyticus and Nucleic Acid Based on Microfluidic System Biomicrofluidics 2024 18 034104 10.1063/5.0193442 Open DOISearch in Google Scholar

Li, Y.; Liu, S.; Wang, Y.; Wang, Y.; Li, S.; He, N.; Deng, Y.; Chen, Z. Research on a Magnetic Separation-Based Rapid Nucleic Acid Extraction System and Its Detection Applications. Biosensors 2023, 13, 903, doi:10.3390/bios13100903. LiY. LiuS. WangY. WangY. LiS. HeN. DengY. ChenZ. Research on a Magnetic Separation-Based Rapid Nucleic Acid Extraction System and Its Detection Applications Biosensors 2023 13 903 10.3390/bios13100903 Open DOISearch in Google Scholar

Yang, K.; Zhou, J.; Zhao, J.; Liu, L.; Hua, C.; Hong, C.; Wang, M.; Hu, A.; Zhang, W.; Cui, J.; et al. Mobile Lab: A Novel Pathogen Assay Using the Nucleic Acid Automatic Assay System Assisted by a Self-Contained Microfluidic Cassette and Chitosan Decorating Magnetic Particles. Sensors and Actuators B: Chemical 2024, 419, 136413, doi:10.1016/j.snb.2024.136413. YangK. ZhouJ. ZhaoJ. LiuL. HuaC. HongC. WangM. HuA. ZhangW. CuiJ. Mobile Lab: A Novel Pathogen Assay Using the Nucleic Acid Automatic Assay System Assisted by a Self-Contained Microfluidic Cassette and Chitosan Decorating Magnetic Particles Sensors and Actuators B: Chemical 2024 419 136413 10.1016/j.snb.2024.136413 Open DOISearch in Google Scholar

Seong, H.; Park, J.; Bae, M.; Shin, S. Rapid and Efficient Extraction of Cell-Free DNA Using Homobifunctional Crosslinkers. Biomedicines 2022, 10, 1883, doi:10.3390/biomedicines10081883. SeongH. ParkJ. BaeM. ShinS. Rapid and Efficient Extraction of Cell-Free DNA Using Homobifunctional Crosslinkers Biomedicines 2022 10 1883 10.3390/biomedicines10081883 Open DOISearch in Google Scholar

Pearlman, S.I.; Leelawong, M.; Richardson, K.A.; Adams, N.M.; Russ, P.K.; Pask, M.E.; Wolfe, A.E.; Wessely, C.; Haselton, F.R. Low-Resource Nucleic Acid Extraction Method Enabled by High-Gradient Magnetic Separation. ACS Appl. Mater. Interfaces 2020, 12, 12457–12467, doi:10.1021/acsami.9b21564. PearlmanS.I. LeelawongM. RichardsonK.A. AdamsN.M. RussP.K. PaskM.E. WolfeA.E. WesselyC. HaseltonF.R. Low-Resource Nucleic Acid Extraction Method Enabled by High-Gradient Magnetic Separation ACS Appl. Mater. Interfaces 2020 12 12457 12467 10.1021/acsami.9b21564 Open DOISearch in Google Scholar

Sciuto, E.L.; Petralia, S.; Calabrese, G.; Conoci, S. An Integrated Biosensor Platform for Extraction and Detection of Nucleic Acids., doi:10.1002/bit.27290. SciutoE.L. PetraliaS. CalabreseG. ConociS. An Integrated Biosensor Platform for Extraction and Detection of Nucleic Acids 10.1002/bit.27290 Open DOISearch in Google Scholar

Li, S.; Wan, C.; Xiao, Y.; Liu, C.; Zhao, X.; Zhang, Y.; Yuan, H.; Wu, L.; Qian, C.; Li, Y.; et al. Multiple On-Line Active Valves Based Centrifugal Microfluidics for Dynamic Solid-Phase Enrichment and Purification of Viral Nucleic Acid. Lab Chip 2024, 24, 3158–3168, doi:10.1039/D4LC00074A. LiS. WanC. XiaoY. LiuC. ZhaoX. ZhangY. YuanH. WuL. QianC. LiY. Multiple On-Line Active Valves Based Centrifugal Microfluidics for Dynamic Solid-Phase Enrichment and Purification of Viral Nucleic Acid Lab Chip 2024 24 3158 3168 10.1039/D4LC00074A Open DOISearch in Google Scholar

Zhao, X.; Huang, Y.; Li, X.; Yang, W.; Lv, Y.; Sun, W.; Huang, J.; Mi, S. Full Integration of Nucleic Acid Extraction and Detection into a Centrifugal Microfluidic Chip Employing Chitosan-Modified Microspheres. Talanta 2022, 250, 123711, doi:10.1016/j.talanta.2022.123711. ZhaoX. HuangY. LiX. YangW. LvY. SunW. HuangJ. MiS. Full Integration of Nucleic Acid Extraction and Detection into a Centrifugal Microfluidic Chip Employing Chitosan-Modified Microspheres Talanta 2022 250 123711 10.1016/j.talanta.2022.123711 Open DOISearch in Google Scholar

Schneider, L.; Cui, F.; Tripathi, A. Isolation of Target DNA Using Synergistic Magnetic Bead Transport and Electrokinetic Flow. Biomicrofluidics 2021, 15, 024104, doi:10.1063/5.0045307. SchneiderL. CuiF. TripathiA. Isolation of Target DNA Using Synergistic Magnetic Bead Transport and Electrokinetic Flow Biomicrofluidics 2021 15 024104 10.1063/5.0045307 Open DOISearch in Google Scholar

Yamaguchi, A.; Matsuda, K.; Uehara, M.; Honda, T.; Saito, Y. A Novel Automated Device for Rapid Nucleic Acid Extraction Utilizing a Zigzag Motion of Magnetic Silica Beads. Analytica Chimica Acta 2016, 906, 1–6, doi:10.1016/j.aca.2015.10.011. YamaguchiA. MatsudaK. UeharaM. HondaT. SaitoY. A Novel Automated Device for Rapid Nucleic Acid Extraction Utilizing a Zigzag Motion of Magnetic Silica Beads Analytica Chimica Acta 2016 906 1 6 10.1016/j.aca.2015.10.011 Open DOISearch in Google Scholar

Huang, J.; Xia, L.; Xiao, X.; Li, G. A Recyclable PDMS Microfluidic Surface-Enhanced Raman Scattering Cu/AgNP Chip for the Analysis of Sulfadiazine in Aquatic Products. New J. Chem. 2024, 48, 11457–11464, doi:10.1039/D4NJ01825G. HuangJ. XiaL. XiaoX. LiG. A Recyclable PDMS Microfluidic Surface-Enhanced Raman Scattering Cu/AgNP Chip for the Analysis of Sulfadiazine in Aquatic Products New J. Chem. 2024 48 11457 11464 10.1039/D4NJ01825G Open DOISearch in Google Scholar

Lyu, C.; Jiang, Y.; Dai, Z.; Xu, X.; Cai, Y.; Liang, B.; Zhou, C.; Ye, X.; Wang, J. Optimizing Magnetic Separation and Cleaning Module in Fully Automated Chemiluminescence Immunoassay Analyzer Using a Special Arrangement of Spliced Magnets and a Three-Stage Magnetic Bead Collection Method. Magnetochemistry 2024, 10, 75, doi:10.3390/magnetochemistry10100075. LyuC. JiangY. DaiZ. XuX. CaiY. LiangB. ZhouC. YeX. WangJ. Optimizing Magnetic Separation and Cleaning Module in Fully Automated Chemiluminescence Immunoassay Analyzer Using a Special Arrangement of Spliced Magnets and a Three-Stage Magnetic Bead Collection Method Magnetochemistry 2024 10 75 10.3390/magnetochemistry10100075 Open DOISearch in Google Scholar

Nisar, N.; Shah, R.; Zada, F.; Khan, B.; Aziz, S.; Rehman, N.; Soonmin, H.; Ahmad, N.; Khan, M.; Hanzala Civil Engineering Journal Novel Ni/ZnO Nanocomposites for the Effective Photocatalytic Degradation of Malachite Green Dye. 2024, 10, doi:10.28991/CEJ-2024-010-08-011. NisarN. ShahR. ZadaF. KhanB. AzizS. RehmanN. SoonminH. AhmadN. KhanM. Hanzala Civil Engineering Journal Novel Ni/ZnO Nanocomposites for the Effective Photocatalytic Degradation of Malachite Green Dye 2024 10 10.28991/CEJ-2024-010-08-011 Open DOISearch in Google Scholar

Zhang, J.; Su, X.; Xu, J.; Wang, J.; Zeng, J.; Li, C.; Chen, W.; Li, T.; Min, X.; Zhang, D.; et al. A Point of Care Platform Based on Microfluidic Chip for Nucleic Acid Extraction in Less than 1 Minute. Biomicrofluidics 2019, 13, 034102, doi:10.1063/1.5088552. ZhangJ. SuX. XuJ. WangJ. ZengJ. LiC. ChenW. LiT. MinX. ZhangD. A Point of Care Platform Based on Microfluidic Chip for Nucleic Acid Extraction in Less than 1 Minute Biomicrofluidics 2019 13 034102 10.1063/1.5088552 Open DOISearch in Google Scholar

Ji, T.; Liu, Z.; Wang, G.; Guo, X.; Akbar Khan, S.; Lai, C.; Chen, H.; Huang, S.; Xia, S.; Chen, B.; et al. Detection of COVID-19: A Review of the Current Literature and Future Perspectives. Biosens Bioelectron 2020, 166, 112455, doi:10.1016/j.bios.2020.112455. JiT. LiuZ. WangG. GuoX. Akbar KhanS. LaiC. ChenH. HuangS. XiaS. ChenB. Detection of COVID-19: A Review of the Current Literature and Future Perspectives Biosens Bioelectron 2020 166 112455 10.1016/j.bios.2020.112455 Open DOISearch in Google Scholar

Saiki, R.K.; Gelfand, D.H.; Stoffel, S.; Scharf, S.J.; Higuchi, R.; Horn, G.T.; Mullis, K.B.; Erlich, H.A. Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase. Science 1988, 239, 487–491, doi:10.1126/science.2448875. SaikiR.K. GelfandD.H. StoffelS. ScharfS.J. HiguchiR. HornG.T. MullisK.B. ErlichH.A. Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase Science 1988 239 487 491 10.1126/science.2448875 Open DOISearch in Google Scholar

Boehme, C.C.; Nabeta, P.; Hillemann, D.; Nicol, M.P.; Shenai, S.; Krapp, F.; Allen, J.; Tahirli, R.; Blakemore, R.; Rustomjee, R.; et al. Rapid Molecular Detection of Tuberculosis and Rifampin Resistance. N Engl J Med 2010, 363, 1005–1015, doi:10.1056/NEJMoa0907847. BoehmeC.C. NabetaP. HillemannD. NicolM.P. ShenaiS. KrappF. AllenJ. TahirliR. BlakemoreR. RustomjeeR. Rapid Molecular Detection of Tuberculosis and Rifampin Resistance N Engl J Med 2010 363 1005 1015 10.1056/NEJMoa0907847 Open DOISearch in Google Scholar

Chen, S.; Sun, Y.; Fan, F.; Chen, S.; Zhang, Y.; Zhang, Y.; Meng, X.; Lin, J.-M. Present Status of Microfluidic PCR Chip in Nucleic Acid Detection and Future Perspective. TrAC Trends in Analytical Chemistry 2022, 157, 116737, doi:10.1016/j.trac.2022.116737. ChenS. SunY. FanF. ChenS. ZhangY. ZhangY. MengX. LinJ.-M. Present Status of Microfluidic PCR Chip in Nucleic Acid Detection and Future Perspective TrAC Trends in Analytical Chemistry 2022 157 116737 10.1016/j.trac.2022.116737 Open DOISearch in Google Scholar

Ling, W.; Zhou, W.; Cui, J.; Shen, Z.; Wei, Q.; Chu, X. Experimental Study on the Heating/Cooling and Temperature Uniformity Performance of the Microchannel Temperature Control Device for Nucleic Acid PCR Amplification Reaction of COVID-19. Applied Thermal Engineering 2023, 226, 120342, doi:10.1016/j.applthermaleng.2023.120342. LingW. ZhouW. CuiJ. ShenZ. WeiQ. ChuX. Experimental Study on the Heating/Cooling and Temperature Uniformity Performance of the Microchannel Temperature Control Device for Nucleic Acid PCR Amplification Reaction of COVID-19 Applied Thermal Engineering 2023 226 120342 10.1016/j.applthermaleng.2023.120342 Open DOISearch in Google Scholar

İnce, G.T.; Yüksekkaya, M.; Haberal, O.E. Micro-Polymerase Chain Reaction for Point-of-Care Detection and beyond: A Review Microfluidics and Nanofluidics. Microfluid Nanofluid 2023, 27, 68, doi:10.1007/s10404-023-02677-w. İnceG.T. YüksekkayaM. HaberalO.E. Micro-Polymerase Chain Reaction for Point-of-Care Detection and beyond: A Review Microfluidics and Nanofluidics Microfluid Nanofluid 2023 27 68 10.1007/s10404-023-02677-w Open DOISearch in Google Scholar

Huang, S.; An, Y.; Xi, B.; Gong, X.; Chen, Z.; Shao, S.; Ge, S.; Zhang, J.; Zhang, D.; Xia, N. Ultra-Fast, Sensitive and Low-Cost Real-Time PCR System for Nucleic Acid Detection. Lab Chip 2023, 23, 2611–2622, doi:10.1039/D3LC00174A. HuangS. AnY. XiB. GongX. ChenZ. ShaoS. GeS. ZhangJ. ZhangD. XiaN. Ultra-Fast, Sensitive and Low-Cost Real-Time PCR System for Nucleic Acid Detection Lab Chip 2023 23 2611 2622 10.1039/D3LC00174A Open DOISearch in Google Scholar

Qiu, X.; Ge, S.; Gao, P.; Li, K.; Yang, S.; Zhang, S.; Ye, X.; Xia, N.; Qian, S. A Smartphone-Based Point-of-Care Diagnosis of H1N1 with Microfluidic Convection PCR. Microsyst Technol 2017, 23, 2951–2956, doi:10.1007/s00542-016-2979-z. QiuX. GeS. GaoP. LiK. YangS. ZhangS. YeX. XiaN. QianS. A Smartphone-Based Point-of-Care Diagnosis of H1N1 with Microfluidic Convection PCR Microsyst Technol 2017 23 2951 2956 10.1007/s00542-016-2979-z Open DOISearch in Google Scholar

Li, Y.; Zhang, C.; Xing, D. Integrated Microfluidic Reverse Transcription-Polymerase Chain Reaction for Rapid Detection of Food- or Waterborne Pathogenic Rotavirus. Analytical Biochemistry 2011, 415, 87–96, doi:10.1016/j.ab.2011.04.026. LiY. ZhangC. XingD. Integrated Microfluidic Reverse Transcription-Polymerase Chain Reaction for Rapid Detection of Food- or Waterborne Pathogenic Rotavirus Analytical Biochemistry 2011 415 87 96 10.1016/j.ab.2011.04.026 Open DOISearch in Google Scholar

Pham, Q.N.; Trinh, K.T.L.; Tran, N.K.S.; Park, T.-S.; Lee, N.Y. Fabrication of 3D Continuous-Flow Reverse-Transcription Polymerase Chain Reaction Microdevice Integrated with on-Chip Fluorescence Detection for Semi-Quantitative Assessment of Gene Expression. Analyst 2018, 143, 5692–5701, doi:10.1039/c8an01739e. PhamQ.N. TrinhK.T.L. TranN.K.S. ParkT.-S. LeeN.Y. Fabrication of 3D Continuous-Flow Reverse-Transcription Polymerase Chain Reaction Microdevice Integrated with on-Chip Fluorescence Detection for Semi-Quantitative Assessment of Gene Expression Analyst 2018 143 5692 5701 10.1039/c8an01739e Open DOISearch in Google Scholar

You, D.J.; Tran, P.L.; Kwon, H.-J.; Patel, D.; Yoon, J.-Y. Very Quick Reverse Transcription Polymerase Chain Reaction for Detecting 2009 H1N1 Influenza A Using Wire-Guide Droplet Manipulationst. Faraday Discuss 2011, 149, 159–170; discussion 227–245, doi:10.1039/c005326k. YouD.J. TranP.L. KwonH.-J. PatelD. YoonJ.-Y. Very Quick Reverse Transcription Polymerase Chain Reaction for Detecting 2009 H1N1 Influenza A Using Wire-Guide Droplet Manipulationst Faraday Discuss 2011 149 159 170 discussion 227–245 10.1039/c005326k Open DOISearch in Google Scholar

Ouyang, Y.; Duarte, G.R.M.; Poe, B.L.; Riehl, P.S.; dos Santos, F.M.; Martin-Didonet, C.C.G.; Carrilho, E.; Landers, J.P. A Disposable Laser Print-Cut-Laminate Polyester Microchip for Multiplexed PCR via Infra-Red-Mediated Thermal Control. Analytica Chimica Acta 2015, 901, 59–67, doi:10.1016/j.aca.2015.09.042. OuyangY. DuarteG.R.M. PoeB.L. RiehlP.S. dos SantosF.M. Martin-DidonetC.C.G. CarrilhoE. LandersJ.P. A Disposable Laser Print-Cut-Laminate Polyester Microchip for Multiplexed PCR via Infra-Red-Mediated Thermal Control Analytica Chimica Acta 2015 901 59 67 10.1016/j.aca.2015.09.042 Open DOISearch in Google Scholar

Shaw, K.J.; Docker, P.T.; Yelland, J.V.; Dyer, C.E.; Greenman, J.; Greenway, G.M.; Haswell, S.J. Rapid PCR Amplification Using a Microfluidic Device with Integrated Microwave Heating and Air Impingement Cooling. Lab Chip 2010, 10, 1725–1728, doi:10.1039/C000357N. ShawK.J. DockerP.T. YellandJ.V. DyerC.E. GreenmanJ. GreenwayG.M. HaswellS.J. Rapid PCR Amplification Using a Microfluidic Device with Integrated Microwave Heating and Air Impingement Cooling Lab Chip 2010 10 1725 1728 10.1039/C000357N Open DOISearch in Google Scholar

Chen, X.; Song, L.; Assadsangabi, B.; Fang, J.; Mohamed Ali, M.S.; Takahata, K. Wirelessly Addressable Heater Array for Centrifugal Microfluidics and Escherichia Coli Sterilization. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); July 2013; pp. 5505–5508. ChenX. SongL. AssadsangabiB. FangJ. Mohamed AliM.S. TakahataK. Wirelessly Addressable Heater Array for Centrifugal Microfluidics and Escherichia Coli Sterilization In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) July 2013 5505 5508 Search in Google Scholar

Fernández-Carballo, B.L.; McBeth, C.; McGuiness, I.; Kalashnikov, M.; Baum, C.; Borrós, S.; Sharon, A.; Sauer-Budge, A.F. Continuous-Flow, Microfluidic, qRT-PCR System for RNA Virus Detection. Anal Bioanal Chem 2018, 410, 33–43, doi:10.1007/s00216-017-0689-8. Fernández-CarballoB.L. McBethC. McGuinessI. KalashnikovM. BaumC. BorrósS. SharonA. Sauer-BudgeA.F. Continuous-Flow, Microfluidic, qRT-PCR System for RNA Virus Detection Anal Bioanal Chem 2018 410 33 43 10.1007/s00216-017-0689-8 Open DOISearch in Google Scholar

Qiu, X.; Shu, J.I.; Baysal, O.; Wu, J.; Qian, S.; Ge, S.; Li, K.; Ye, X.; Xia, N.; Yu, D. Real-Time Capillary Convective PCR Based on Horizontal Thermal Convection. Microfluid Nanofluid 2019, 23, 39, doi:10.1007/s10404-019-2207-0. QiuX. ShuJ.I. BaysalO. WuJ. QianS. GeS. LiK. YeX. XiaN. YuD. Real-Time Capillary Convective PCR Based on Horizontal Thermal Convection Microfluid Nanofluid 2019 23 39 10.1007/s10404-019-2207-0 Open DOISearch in Google Scholar

Trinh, K.T.L.; Lee, N.Y. A Portable Microreactor with Minimal Accessories for Polymerase Chain Reaction: Application to the Determination of Foodborne Pathogens. Microchim Acta 2017, 184, 4225–4233, doi:10.1007/s00604-017-2451-5. TrinhK.T.L. LeeN.Y. A Portable Microreactor with Minimal Accessories for Polymerase Chain Reaction: Application to the Determination of Foodborne Pathogens Microchim Acta 2017 184 4225 4233 10.1007/s00604-017-2451-5 Open DOISearch in Google Scholar

Nouwairi, R.L.; Cunha, L.L.; Turiello, R.; Scott, O.; Hickey, J.; Thomson, S.; Knowles, S.; Chapman, J.D.; Landers, J.P. Ultra-Rapid Real-Time Microfluidic RT-PCR Instrument for Nucleic Acid Analysis. Lab Chip 2022, 22, 3424–3435, doi:10.1039/d2lc00495j. NouwairiR.L. CunhaL.L. TurielloR. ScottO. HickeyJ. ThomsonS. KnowlesS. ChapmanJ.D. LandersJ.P. Ultra-Rapid Real-Time Microfluidic RT-PCR Instrument for Nucleic Acid Analysis Lab Chip 2022 22 3424 3435 10.1039/d2lc00495j Open DOISearch in Google Scholar

An, Y.-Q.; Huang, S.-L.; Xi, B.-C.; Gong, X.-L.; Ji, J.-H.; Hu, Y.; Ding, Y.-J.; Zhang, D.-X.; Ge, S.-X.; Zhang, J.; et al. Ultrafast Microfluidic PCR Thermocycler for Nucleic Acid Amplification. Micromachines (Basel) 2023, 14, 658, doi:10.3390/mi14030658. AnY.-Q. HuangS.-L. XiB.-C. GongX.-L. JiJ.-H. HuY. DingY.-J. ZhangD.-X. GeS.-X. ZhangJ. Ultrafast Microfluidic PCR Thermocycler for Nucleic Acid Amplification Micromachines (Basel) 2023 14 658 10.3390/mi14030658 Open DOISearch in Google Scholar

Trauba, J.M.; Wittwer, C.T. Microfluidic Extreme PCR: <1 Minute DNA Amplification in a Thin Film Disposable. Journal of Biomedical Science and Engineering 2017, 10, 219–231, doi:10.4236/jbise.2017.105017. TraubaJ.M. WittwerC.T. Microfluidic Extreme PCR: <1 Minute DNA Amplification in a Thin Film Disposable Journal of Biomedical Science and Engineering 2017 10 219 231 10.4236/jbise.2017.105017 Open DOISearch in Google Scholar

Yeom, D.; Kim, J.; Kim, S.; Ahn, S.; Choi, J.; Kim, Y.; Koo, C. A Thermocycler Using a Chip Resistor Heater and a Glass Microchip for a Portable and Rapid Microchip-Based PCR Device. Micromachines (Basel) 2022, 13, 339, doi:10.3390/mi13020339. YeomD. KimJ. KimS. AhnS. ChoiJ. KimY. KooC. A Thermocycler Using a Chip Resistor Heater and a Glass Microchip for a Portable and Rapid Microchip-Based PCR Device Micromachines (Basel) 2022 13 339 10.3390/mi13020339 Open DOISearch in Google Scholar

Oyewola, O.M.; Awonusi, A.A.; Ismail, O.S. Performance Optimization of Step-Like Divergence Plenum Air-Cooled Li-Ion Battery Thermal Management System Using Variable-Step-Height Configuration. Emerging Science Journal 2024, 8, 795–814, doi:10.28991/ESJ-2024-08-03-01. OyewolaO.M. AwonusiA.A. IsmailO.S. Performance Optimization of Step-Like Divergence Plenum Air-Cooled Li-Ion Battery Thermal Management System Using Variable-Step-Height Configuration Emerging Science Journal 2024 8 795 814 10.28991/ESJ-2024-08-03-01 Open DOISearch in Google Scholar

Salman, A.; Carney, H.; Bateson, S.; Ali, Z. Shunting Microfluidic PCR Device for Rapid Bacterial Detection. Talanta 2020, 207, 120303, doi:10.1016/j.talanta.2019.120303. SalmanA. CarneyH. BatesonS. AliZ. Shunting Microfluidic PCR Device for Rapid Bacterial Detection Talanta 2020 207 120303 10.1016/j.talanta.2019.120303 Open DOISearch in Google Scholar

Petralia, Salvatore & Castagna, Maria Eloisa & Spata, Massimo & Amore, Maria & Conoci, Sabrina. (2016). A Point of Care Real Time PCR Platform Based on Silicon Technology. Biosensors Journal. 5. doi:10.4172/2090-4967.1000136. PetraliaSalvatore CastagnaMaria Eloisa SpataMassimo AmoreMaria ConociSabrina 2016 A Point of Care Real Time PCR Platform Based on Silicon Technology Biosensors Journal 5 10.4172/2090-4967.1000136 Open DOISearch in Google Scholar

Lim, J.; Jeong, S.; Kim, M.; Lee, J.-H. Battery-Operated Portable PCR System with Enhanced Stability of Pt RTD. PLOS ONE 2019, 14, e0218571, doi:10.1371/journal.pone.0218571. LimJ. JeongS. KimM. LeeJ.-H. Battery-Operated Portable PCR System with Enhanced Stability of Pt RTD PLOS ONE 2019 14 e0218571 10.1371/journal.pone.0218571 Open DOISearch in Google Scholar

Yang, Y.; Chen, Y.; Tang, H.; Zong, N.; Jiang, X. Microfluidics for Biomedical Analysis. Small Methods 2020, 4, 1900451, doi:10.1002/smtd.201900451. YangY. ChenY. TangH. ZongN. JiangX. Microfluidics for Biomedical Analysis Small Methods 2020 4 1900451 10.1002/smtd.201900451 Open DOISearch in Google Scholar

Si, H.; Xu, G.; Jing, F.; Sun, P.; Zhao, D.; Wu, D. A Multi-Volume Microfluidic Device with No Reagent Loss for Low-Cost Digital PCR Application. Sensors and Actuators B: Chemical 2020, 318, 128197, doi:10.1016/j.snb.2020.128197. SiH. XuG. JingF. SunP. ZhaoD. WuD. A Multi-Volume Microfluidic Device with No Reagent Loss for Low-Cost Digital PCR Application Sensors and Actuators B: Chemical 2020 318 128197 10.1016/j.snb.2020.128197 Open DOISearch in Google Scholar

Effect of Gadolinium Doping on the Structure of Ce1-xGdxO2-x/2 Solid Solutions Prepared by Ionic Gelation Approach | Ilcheva | Emerging Science Journal Available online: https://www.ijournalse.org/index.php/ESJ/article/view/2504 (accessed on 6 December 2024). Effect of Gadolinium Doping on the Structure of Ce1-xGdxO2-x/2 Solid Solutions Prepared by Ionic Gelation Approach Ilcheva Emerging Science Journal Available online: https://www.ijournalse.org/index.php/ESJ/article/view/2504 (accessed on 6 December 2024). Search in Google Scholar

Pumford, E.A.; Lu, J.; Spaczai, I.; Prasetyo, M.E.; Zheng, E.M.; Zhang, H.; Kamei, D.T. Developments in Integrating Nucleic Acid Isothermal Amplification and Detection Systems for Point-of-Care Diagnostics. Biosens Bioelectron 2020, 170, 112674, doi:10.1016/j.bios.2020.112674. PumfordE.A. LuJ. SpaczaiI. PrasetyoM.E. ZhengE.M. ZhangH. KameiD.T. Developments in Integrating Nucleic Acid Isothermal Amplification and Detection Systems for Point-of-Care Diagnostics Biosens Bioelectron 2020 170 112674 10.1016/j.bios.2020.112674 Open DOISearch in Google Scholar

Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic acids research, 28(12), E63. https://doi.org/10.1093/nar/28.12.e63. NotomiT. OkayamaH. MasubuchiH. YonekawaT. WatanabeK. AminoN. HaseT. 2000 Loop-mediated isothermal amplification of DNA Nucleic acids research 28 12 E63 https://doi.org/10.1093/nar/28.12.e63. Search in Google Scholar

Rabe, B. A., & Cepko, C. (2020). SARSCoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification. Proceedings of the National Academy of Sciences of the United States of America, 117(39), 24450–24458. https://doi.org/10.1073/pnas.2011221117. RabeB. A. CepkoC. 2020 SARSCoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification Proceedings of the National Academy of Sciences of the United States of America 117 39 24450 24458 https://doi.org/10.1073/pnas.2011221117. Search in Google Scholar

Suea-Ngam, A.; Bezinge, L.; Mateescu, B.; Howes, P.D.; deMello, A.J.; Richards, D.A. Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care. ACS Sens 2020, 5, 2701–2723, doi:10.1021/acssensors.0c01488. Suea-NgamA. BezingeL. MateescuB. HowesP.D. deMelloA.J. RichardsD.A. Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care ACS Sens 2020 5 2701 2723 10.1021/acssensors.0c01488 Open DOISearch in Google Scholar

Jiang, L.; Lan, X.; Ren, L.; Yang, M.; Wei, B.; Wang, Y. Design of a Digital LAMP Detection Platform Based on Droplet Microfluidic Technology. Micromachines (Basel) 2023, 14, 1077, doi:10.3390/mi14051077. JiangL. LanX. RenL. YangM. WeiB. WangY. Design of a Digital LAMP Detection Platform Based on Droplet Microfluidic Technology Micromachines (Basel) 2023 14 1077 10.3390/mi14051077 Open DOISearch in Google Scholar

Xiao, B.; Zhao, R.; Wang, N.; Zhang, J.; Sun, X.; Huang, F.; Chen, A. Integrating Microneedle DNA Extraction to Hand-Held Microfluidic Colorimetric LAMP Chip System for Meat Adulteration Detection. Food Chem 2023, 411, 135508, doi:10.1016/j.foodchem.2023.135508. XiaoB. ZhaoR. WangN. ZhangJ. SunX. HuangF. ChenA. Integrating Microneedle DNA Extraction to Hand-Held Microfluidic Colorimetric LAMP Chip System for Meat Adulteration Detection Food Chem 2023 411 135508 10.1016/j.foodchem.2023.135508 Open DOISearch in Google Scholar

El-Tholoth, M.; Bai, H.; Mauk, M.G.; Saif, L.; Bau, H.H. A Portable, 3D Printed, Microfluidic Device for Multiplexed, Real Time, Molecular Detection of the Porcine Epidemic Diarrhea Virus, Transmissible Gastroenteritis Virus, and Porcine Deltacoronavirus at the Point of Need. Lab Chip 2021, 21, 1118–1130, doi:10.1039/d0lc01229g. El-TholothM. BaiH. MaukM.G. SaifL. BauH.H. A Portable, 3D Printed, Microfluidic Device for Multiplexed, Real Time, Molecular Detection of the Porcine Epidemic Diarrhea Virus, Transmissible Gastroenteritis Virus, and Porcine Deltacoronavirus at the Point of Need Lab Chip 2021 21 1118 1130 10.1039/d0lc01229g Open DOISearch in Google Scholar

Loo, J.; Kwok, H.C.; Leung, C.C.H.; Wu, S.Y.; Law, I.L.G.; Cheung, Y.K.; Cheung, Y.Y.; Chin, M.L.; Kwan, P.; Hui, M.; et al. Sample-to-Answer on Molecular Diagnosis of Bacterial Infection Using Integrated Lab-on-a-Disc. Biosens Bioelectron 2017, 93, 212–219, doi:10.1016/j.bios.2016.09.001. LooJ. KwokH.C. LeungC.C.H. WuS.Y. LawI.L.G. CheungY.K. CheungY.Y. ChinM.L. KwanP. HuiM. Sample-to-Answer on Molecular Diagnosis of Bacterial Infection Using Integrated Lab-on-a-Disc Biosens Bioelectron 2017 93 212 219 10.1016/j.bios.2016.09.001 Open DOISearch in Google Scholar

Liu, D.; Zhu, Y.; Li, N.; Lu, Y.; Cheng, J.; Xu, Y. A Portable Microfluidic Analyzer for Integrated Bacterial Detection Using Visible Loop-Mediated Amplification. Sensors and Actuators B: Chemical 2020, 310, 127834, doi:10.1016/j.snb.2020.127834. LiuD. ZhuY. LiN. LuY. ChengJ. XuY. A Portable Microfluidic Analyzer for Integrated Bacterial Detection Using Visible Loop-Mediated Amplification Sensors and Actuators B: Chemical 2020 310 127834 10.1016/j.snb.2020.127834 Open DOISearch in Google Scholar

Gansen, A.; Herrick, A.M.; Dimov, I.K.; Lee, L.P.; Chiu, D.T. Digital LAMP in a Sample Self-Digitization (SD) Chip. Lab Chip 2012, 12, 2247–2254, doi:10.1039/C2LC21247A. GansenA. HerrickA.M. DimovI.K. LeeL.P. ChiuD.T. Digital LAMP in a Sample Self-Digitization (SD) Chip Lab Chip 2012 12 2247 2254 10.1039/C2LC21247A Open DOISearch in Google Scholar

Rane, T.D.; Chen, L.; Zec, H.C.; Wang, T.-H. Microfluidic Continuous Flow Digital Loop-Mediated Isothermal Amplification (LAMP). Lab Chip 2015, 15, 776–782, doi:10.1039/C4LC01158A. RaneT.D. ChenL. ZecH.C. WangT.-H. Microfluidic Continuous Flow Digital Loop-Mediated Isothermal Amplification (LAMP) Lab Chip 2015 15 776 782 10.1039/C4LC01158A Open DOISearch in Google Scholar

Xie, M.; Chen, T.; Cai, Z.; Lei, B.; Dong, C. A Digital Microfluidic Platform Coupled with Colorimetric Loop-Mediated Isothermal Amplification for on-Site Visual Diagnosis of Multiple Diseases. Lab Chip 2023, 23, 2778–2788, doi:10.1039/d2lc01156e. XieM. ChenT. CaiZ. LeiB. DongC. A Digital Microfluidic Platform Coupled with Colorimetric Loop-Mediated Isothermal Amplification for on-Site Visual Diagnosis of Multiple Diseases Lab Chip 2023 23 2778 2788 10.1039/d2lc01156e Open DOISearch in Google Scholar

Daposang, E.S.; Hasanah, F.; Silaban, D. PROFILE OF PULMONARY AND EXTRA PULMONARY TUBERCULOSIS USE GENEXPER AT THE PIRNGADI HOSPITAL MEDAN. BIOLINK (Jurnal Biologi Lingkungan Industri Kesehatan) 2021, 8, 44–52, doi:10.31289/biolink.v8i1.4638. DaposangE.S. HasanahF. SilabanD. PROFILE OF PULMONARY AND EXTRA PULMONARY TUBERCULOSIS USE GENEXPER AT THE PIRNGADI HOSPITAL MEDAN BIOLINK (Jurnal Biologi Lingkungan Industri Kesehatan) 2021 8 44 52 10.31289/biolink.v8i1.4638 Open DOISearch in Google Scholar

Smithgall, M.C.; Scherberkova, I.; Whittier, S.; Green, D.A. Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche Cobas for the Rapid Detection of SARS-CoV-2. Journal of Clinical Virology 2020, 128, 104428, doi:10.1016/j.jcv.2020.104428. SmithgallM.C. ScherberkovaI. WhittierS. GreenD.A. Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche Cobas for the Rapid Detection of SARS-CoV-2 Journal of Clinical Virology 2020 128 104428 10.1016/j.jcv.2020.104428 Open DOISearch in Google Scholar

Wei, Y.-J.; Zhao, Y.-N.; Zhang, X.; Wei, X.; Chen, M.-L.; Chen, X.-W. Biochemical Analysis Based on Optical Detection Integrated Microfluidic Chip. TrAC Trends in Analytical Chemistry 2023, 158, 116865, doi:10.1016/j.trac.2022.116865. WeiY.-J. ZhaoY.-N. ZhangX. WeiX. ChenM.-L. ChenX.-W. Biochemical Analysis Based on Optical Detection Integrated Microfluidic Chip TrAC Trends in Analytical Chemistry 2023 158 116865 10.1016/j.trac.2022.116865 Open DOISearch in Google Scholar

Zhang, L.; Huang, B.; Jin, J.; Li, Y.; Gu, N. Advances in Nanoprobes-Based Immunoassays. BMEMat 2024, 2, e12057, doi:10.1002/bmm2.12057. ZhangL. HuangB. JinJ. LiY. GuN. Advances in Nanoprobes-Based Immunoassays BMEMat 2024 2 e12057 10.1002/bmm2.12057 Open DOISearch in Google Scholar

Xu, J.; Tang, Q.; Zhang, R.; Chen, H.; Khoo, B.L.; Zhang, X.; Chen, Y.; Yan, H.; Li, J.; Shao, H.; et al. Sensitive Detection of microRNAs Using Polyadenine-Mediated Fluorescent Spherical Nucleic Acids and a Microfluidic Electrokinetic Signal Amplification Chip. J Pharm Anal 2022, 12, 808–813, doi:10.1016/j.jpha.2022.05.009. XuJ. TangQ. ZhangR. ChenH. KhooB.L. ZhangX. ChenY. YanH. LiJ. ShaoH. Sensitive Detection of microRNAs Using Polyadenine-Mediated Fluorescent Spherical Nucleic Acids and a Microfluidic Electrokinetic Signal Amplification Chip J Pharm Anal 2022 12 808 813 10.1016/j.jpha.2022.05.009 Open DOISearch in Google Scholar

Yao, Y.; Zhao, N.; Jing, W.; Liu, Q.; Lu, H.; Zhao, W.; Zhao, W.; Yuan, Z.; Xia, H.; Sui, G. A Self-Powered Rapid Loading Microfluidic Chip for Vector-Borne Viruses Detection Using RT-LAMP. Sensors and Actuators B: Chemical 2021, 333, 129521, doi:10.1016/j.snb.2021.129521. YaoY. ZhaoN. JingW. LiuQ. LuH. ZhaoW. ZhaoW. YuanZ. XiaH. SuiG. A Self-Powered Rapid Loading Microfluidic Chip for Vector-Borne Viruses Detection Using RT-LAMP Sensors and Actuators B: Chemical 2021 333 129521 10.1016/j.snb.2021.129521 Open DOISearch in Google Scholar

Jiang, K.; Wu, J.; Kim, J.-E.; An, S.; Nam, J.-M.; Peng, Y.-K.; Lee, J.-H. Plasmonic Cross-Linking Colorimetric PCR for Simple and Sensitive Nucleic Acid Detection. Nano Lett. 2023, 23, 3897–3903, doi:10.1021/acs.nanolett.3c00533. JiangK. WuJ. KimJ.-E. AnS. NamJ.-M. PengY.-K. LeeJ.-H. Plasmonic Cross-Linking Colorimetric PCR for Simple and Sensitive Nucleic Acid Detection Nano Lett. 2023 23 3897 3903 10.1021/acs.nanolett.3c00533 Open DOISearch in Google Scholar

Fu, L.; Qian, Y.; Zhou, J.; Zheng, L.; Wang, Y. Fluorescence-Based Quantitative Platform for Ultrasensitive Food Allergen Detection: From Immunoassays to DNA Sensors. Comprehensive Reviews in Food Science and Food Safety 2020, 19, 3343–3364, doi:10.1111/1541-4337.12641. FuL. QianY. ZhouJ. ZhengL. WangY. Fluorescence-Based Quantitative Platform for Ultrasensitive Food Allergen Detection: From Immunoassays to DNA Sensors Comprehensive Reviews in Food Science and Food Safety 2020 19 3343 3364 10.1111/1541-4337.12641 Open DOISearch in Google Scholar

Surucu, O.; Öztürk, E.; Kuralay, F. Nucleic Acid Integrated Technologies for Electrochemical Point-of-Care Diagnostics: A Comprehensive Review. Electroanalysis 2022, 34, 148–160, doi:10.1002/elan.202100309. SurucuO. ÖztürkE. KuralayF. Nucleic Acid Integrated Technologies for Electrochemical Point-of-Care Diagnostics: A Comprehensive Review Electroanalysis 2022 34 148 160 10.1002/elan.202100309 Open DOISearch in Google Scholar

Zhou, P.; He, H.; Ma, H.; Wang, S.; Hu, S. A Review of Optical Imaging Technologies for Microfluidics. Micromachines 2022, 13, 274, doi:10.3390/mi13020274. ZhouP. HeH. MaH. WangS. HuS. A Review of Optical Imaging Technologies for Microfluidics Micromachines 2022 13 274 10.3390/mi13020274 Open DOISearch in Google Scholar

Katzmeier, F.; Aufinger, L.; Dupin, A.; Quintero, J.; Lenz, M.; Bauer, L.; Klumpe, S.; Sherpa, D.; Dürr, B.; Honemann, M.; et al. A Low-Cost Fluorescence Reader for in Vitro Transcription and Nucleic Acid Detection with Cas13a. PLoS One 2019, 14, e0220091, doi:10.1371/journal.pone.0220091. KatzmeierF. AufingerL. DupinA. QuinteroJ. LenzM. BauerL. KlumpeS. SherpaD. DürrB. HonemannM. A Low-Cost Fluorescence Reader for in Vitro Transcription and Nucleic Acid Detection with Cas13a PLoS One 2019 14 e0220091 10.1371/journal.pone.0220091 Open DOISearch in Google Scholar

Spibey, C.A.; Jackson, P.; Herick, K. A Unique Charge-Coupled Device/Xenon Arc Lamp Based Imaging System for the Accurate Detection and Quantitation of Multicolour Fluorescence. ELECTROPHORESIS 2001, 22, 829–836, doi:10.1002/1522-2683()22:5<829::AID-ELPS829>3.0.CO;2-U. SpibeyC.A. JacksonP. HerickK. A Unique Charge-Coupled Device/Xenon Arc Lamp Based Imaging System for the Accurate Detection and Quantitation of Multicolour Fluorescence ELECTROPHORESIS 2001 22 829 836 10.1002/1522-2683()22:5<829::AID-ELPS829>3.0.CO;2-U Open DOISearch in Google Scholar

Chen, P.; Pan, D.; Mao, Z. Fluorescence Measured Using a Field-Portable Laser Fluorometer as a Proxy for CDOM Absorption. Estuarine, Coastal and Shelf Science 2014, 146, 33–41, doi:10.1016/j.ecss.2014.05.010. ChenP. PanD. MaoZ. Fluorescence Measured Using a Field-Portable Laser Fluorometer as a Proxy for CDOM Absorption Estuarine, Coastal and Shelf Science 2014 146 33 41 10.1016/j.ecss.2014.05.010 Open DOISearch in Google Scholar

Velpula, R.T.; Jain, B.; Philip, M.R.; Nguyen, H.D.; Wang, R.; Nguyen, H.P.T. Epitaxial Growth and Characterization of AlInN-Based Core-Shell Nanowire Light Emitting Diodes Operating in the Ultraviolet Spectrum. Sci Rep 2020, 10, 2547, doi:10.1038/s41598-020-59442-0. VelpulaR.T. JainB. PhilipM.R. NguyenH.D. WangR. NguyenH.P.T. Epitaxial Growth and Characterization of AlInN-Based Core-Shell Nanowire Light Emitting Diodes Operating in the Ultraviolet Spectrum Sci Rep 2020 10 2547 10.1038/s41598-020-59442-0 Open DOISearch in Google Scholar

Baeg, K.-J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y.-Y. Organic Light Detectors: Photodiodes and Phototransistors. Adv Mater 2013, 25, 4267–4295, doi:10.1002/adma.201204979. BaegK.-J. BindaM. NataliD. CaironiM. NohY.-Y. Organic Light Detectors: Photodiodes and Phototransistors Adv Mater 2013 25 4267 4295 10.1002/adma.201204979 Open DOISearch in Google Scholar

Fang, Y.; Wang, Y.; Su, X.; Liu, H.; Chen, H.; Chen, Z.; Jin, L.; He, N. A Miniaturized and Integrated Dual-Channel Fluorescence Module for Multiplex Real-Time PCR in the Portable Nucleic Acid Detection System. Front. Bioeng. Biotechnol. 2022, 10, doi:10.3389/fbioe.2022.996456. FangY. WangY. SuX. LiuH. ChenH. ChenZ. JinL. HeN. A Miniaturized and Integrated Dual-Channel Fluorescence Module for Multiplex Real-Time PCR in the Portable Nucleic Acid Detection System Front. Bioeng. Biotechnol. 2022 10 10.3389/fbioe.2022.996456 Open DOISearch in Google Scholar

Wang, Y.; Fang, Y.; Liu, H.; Su, X.; Chen, Z.; Li, S.; He, N. A Highly Integrated and Diminutive Fluorescence Detector for Point-of-Care Testing: Dual Negative Feedback Light-Emitting Diode (LED) Drive and Photoelectric Processing Circuits Design and Implementation. Biosensors (Basel) 2022, 12, 764, doi:10.3390/bios12090764. WangY. FangY. LiuH. SuX. ChenZ. LiS. HeN. A Highly Integrated and Diminutive Fluorescence Detector for Point-of-Care Testing: Dual Negative Feedback Light-Emitting Diode (LED) Drive and Photoelectric Processing Circuits Design and Implementation Biosensors (Basel) 2022 12 764 10.3390/bios12090764 Open DOISearch in Google Scholar

Zhu, Y.; Tong, X.; Wei, Q.; Cai, G.; Cao, Y.; Tong, C.; Shi, S.; Wang, F. 3D Origami Paper-Based Ratiometric Fluorescent Microfluidic Device for Visual Point-of-Care Detection of Alkaline Phosphatase and Butyrylcholinesterase. Biosensors and Bioelectronics 2022, 196, 113691, doi:10.1016/j.bios.2021.113691. ZhuY. TongX. WeiQ. CaiG. CaoY. TongC. ShiS. WangF. 3D Origami Paper-Based Ratiometric Fluorescent Microfluidic Device for Visual Point-of-Care Detection of Alkaline Phosphatase and Butyrylcholinesterase Biosensors and Bioelectronics 2022 196 113691 10.1016/j.bios.2021.113691 Open DOISearch in Google Scholar

Mumtaz, Z.; Rashid, Z.; Ali, A.; Arif, A.; Ameen, F.; AlTami, M.S.; Yousaf, M.Z. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches. Biosensors 2023, 13, 584, doi:10.3390/bios13060584. MumtazZ. RashidZ. AliA. ArifA. AmeenF. AlTamiM.S. YousafM.Z. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches Biosensors 2023 13 584 10.3390/bios13060584 Open DOISearch in Google Scholar

Walker, F.M.; Hsieh, K. Advances in Directly Amplifying Nucleic Acids from Complex Samples. Biosensors 2019, 9, 117, doi:10.3390/bios9040117. WalkerF.M. HsiehK. Advances in Directly Amplifying Nucleic Acids from Complex Samples Biosensors 2019 9 117 10.3390/bios9040117 Open DOISearch in Google Scholar

Li, Z.; Bai, Y.; You, M.; Hu, J.; Yao, C.; Cao, L.; Xu, F. Fully Integrated Microfluidic Devices for Qualitative, Quantitative and Digital Nucleic Acids Testing at Point of Care. Biosensors and Bioelectronics 2021, 177, 112952, doi:10.1016/j.bios.2020.112952. LiZ. BaiY. YouM. HuJ. YaoC. CaoL. XuF. Fully Integrated Microfluidic Devices for Qualitative, Quantitative and Digital Nucleic Acids Testing at Point of Care Biosensors and Bioelectronics 2021 177 112952 10.1016/j.bios.2020.112952 Open DOISearch in Google Scholar

Taylor, C.D.; Gully, B.; Sánchez, A.N.; Rode, E.; Agarwal, A.S. Towards Materials Sustainability through Materials Stewardship. Sustainability 2016, 8, 1001, doi:10.3390/su8101001. TaylorC.D. GullyB. SánchezA.N. RodeE. AgarwalA.S. Towards Materials Sustainability through Materials Stewardship Sustainability 2016 8 1001 10.3390/su8101001 Open DOISearch in Google Scholar

Human – Computer Interface Design Can Reduce Misperceptions of Feedback - Howie - 2000 - System Dynamics Review - Wiley Online Library Available online: https://onlinelibrary.wiley.com/doi/10.1002/1099-1727(200023)16:3%3C151::AIDSDR191%3E3.0.CO;2-0 (accessed on 6 December 2024). Human – Computer Interface Design Can Reduce Misperceptions of Feedback - Howie 2000 System Dynamics Review Wiley Online Library Available online: https://onlinelibrary.wiley.com/doi/10.1002/1099-1727(200023)16:3%3C151::AIDSDR191%3E3.0.CO;2-0 (accessed on 6 December 2024). Search in Google Scholar

POCT Analysts’ Perspective: Practices and Wants for Improvement | The Journal of Applied Laborator y Medicine | Oxford Academic Available online: https://academic.oup.com/jalm/article/5/3/480/5827435?login=false (accessed on 6 December 2024). POCT Analysts’ Perspective: Practices and Wants for Improvement The Journal of Applied Laborator y Medicine Oxford Academic Available online: https://academic.oup.com/jalm/article/5/3/480/5827435?login=false (accessed on 6 December 2024). Search in Google Scholar

Point-of-Care Testing (POCT) and IT Security Concepts Available online: https://www.degruyter.com/document/doi/10.1515/labmed-2019-0199/html (accessed on 6 December 2024). Point-of-Care Testing (POCT) and IT Security Concepts Available online: https://www.degruyter.com/document/doi/10.1515/labmed-2019-0199/html (accessed on 6 December 2024). Search in Google Scholar

Jinjin L.U.; Yongxin S.; Yuan T.; Tong H.O.U. The Flow Pump Control System Design Applied to Microfluidic Experimental Platform. sykxyjs 2023, 21, 50–56, doi:10.12179/1672-4550.20220641. JinjinL.U. YongxinS. YuanT. TongH.O.U. The Flow Pump Control System Design Applied to Microfluidic Experimental Platform sykxyjs 2023 21 50 56 10.12179/1672-4550.20220641 Open DOISearch in Google Scholar

Liu, D.; Wang, Y.; Li, X.; Li, M.; Wu, Q.; Song, Y.; Zhu, Z.; Yang, C. Integrated Microfluidic Devices for in Vitro Diagnostics at Point of Care., doi:10.1002/agt2.184. LiuD. WangY. LiX. LiM. WuQ. SongY. ZhuZ. YangC. Integrated Microfluidic Devices for in Vitro Diagnostics at Point of Care 10.1002/agt2.184 Open DOISearch in Google Scholar

Xing, G.; Ai, J.; Wang, N.; Pu, Q. Recent Progress of Smartphone-Assisted Microfluidic Sensors for Point of Care Testing. TrAC Trends in Analytical Chemistry 2022, 157, 116792, doi:10.1016/j.trac.2022.116792. XingG. AiJ. WangN. PuQ. Recent Progress of Smartphone-Assisted Microfluidic Sensors for Point of Care Testing TrAC Trends in Analytical Chemistry 2022 157 116792 10.1016/j.trac.2022.116792 Open DOISearch in Google Scholar

Zhou, D.; Zhang, Z.; Li, Y.; Ma, T.; He, H.; Li, H. Intelligent Textiles Make Life Wirelessly Energetic by Coupling Radiation Energy and Human. BMEMat 2024, 2, e12090, doi:10.1002/bmm2.12090. ZhouD. ZhangZ. LiY. MaT. HeH. LiH. Intelligent Textiles Make Life Wirelessly Energetic by Coupling Radiation Energy and Human BMEMat 2024 2 e12090 10.1002/bmm2.12090 Open DOISearch in Google Scholar

Sachdeva, S.; Davis, R.W.; Saha, A.K. Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions. Front. Bioeng. Biotechnol. 2021, 8, doi:10.3389/fbioe.2020.602659. SachdevaS. DavisR.W. SahaA.K. Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions Front. Bioeng. Biotechnol. 2021 8 10.3389/fbioe.2020.602659 Open DOISearch in Google Scholar

Wiencek, J.; Nichols, J. Issues in the Practical Implementation of POCT: Overcoming Challenges. Expert Review of Molecular Diagnostics 2016. WiencekJ. NicholsJ. Issues in the Practical Implementation of POCT: Overcoming Challenges Expert Review of Molecular Diagnostics 2016 Search in Google Scholar

Langue:
Anglais
Périodicité:
1 fois par an
Sujets de la revue:
Ingénierie, Présentations et aperçus, Ingénierie, autres