Accès libre

Evaluating the Adaptability of Large Language Models for Knowledge-aware Question and Answering

, , ,  et   
16 août 2024
À propos de cet article

Citez
Télécharger la couverture

Jin, H., Yang, Z., Meng, D., Wang, J., & Tan, J. (2024). A Comprehensive Survey on Process-Oriented Automatic Text Summarization with Exploration of LLM-Based Methods. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2403.02901 JinH. YangZ. MengD. WangJ. TanJ. 2024 A Comprehensive Survey on Process-Oriented Automatic Text Summarization with Exploration of LLM-Based Methods arXiv (Cornell University) https://doi.org/10.48550/arxiv.2403.02901 Search in Google Scholar

Brown, Tom B. “Language models are few-shot learners.” arXiv preprint arXiv:2005.14165 (2020). BrownTom B. “Language models are few-shot learners.” arXiv preprint arXiv:2005.14165 2020 Search in Google Scholar

Chowdhery, Aakanksha, et al. “PaLM: Scaling language modeling with pathways.” arXiv preprint arXiv:2204.02311 (2023). ChowdheryAakanksha “PaLM: Scaling language modeling with pathways.” arXiv preprint arXiv:2204.02311 2023 Search in Google Scholar

Widyassari, A. P., Rustad, S., Shidik, G. F., Noersasongko, E., Syukur, A., Affandy, A., & Setiadi, D. R. I. M. (2022). Review of automatic text summarization techniques & methods. Journal of King Saud University - Computer and Information Sciences, 34(4), 1029–1046. https://doi.org/10.1016/j.jksuci.2020.05.006 WidyassariA. P. RustadS. ShidikG. F. NoersasongkoE. SyukurA. AffandyA. SetiadiD. R. I. M. 2022 Review of automatic text summarization techniques & methods Journal of King Saud University - Computer and Information Sciences 34 4 1029 1046 https://doi.org/10.1016/j.jksuci.2020.05.006 Search in Google Scholar

Zhang, M., Zhou, G., Yu, W., Huang, N., & Liu, W. (2022). A comprehensive survey of abstractive text summarization based on deep learning. Computational Intelligence and Neuroscience, 2022, 1–21. https://doi.org/10.1155/2022/7132226 ZhangM. ZhouG. YuW. HuangN. LiuW. 2022 A comprehensive survey of abstractive text summarization based on deep learning Computational Intelligence and Neuroscience 2022 1 21 https://doi.org/10.1155/2022/7132226 Search in Google Scholar

A survey of automatic text Summarization: progress, process and challenges. (2021). IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/9623462/ A survey of automatic text Summarization: progress, process and challenges 2021 IEEE Journals & Magazine | IEEE Xplore https://ieeexplore.ieee.org/abstract/document/9623462/ Search in Google Scholar

Gatt, A., & Krahmer, E. (2018). Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation. Journal of Artificial Intelligence Research, 61, 65–170. https://doi.org/10.1613/jair.5477 GattA. KrahmerE. 2018 Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation Journal of Artificial Intelligence Research 61 65 170 https://doi.org/10.1613/jair.5477 Search in Google Scholar

Hadi, M. U., Tashi, Q. A., Qureshi, R., Shah, A., Muneer, A., Irfan, M., Zafar, A., Shaikh, M. B., Akhtar, N., Wu, J., & Mirjalili, S. (2023). A survey on large language models: applications, challenges, limitations, and practical usage. TechRxiv. https://doi.org/10.36227/techrxiv.23589741.v1 HadiM. U. TashiQ. A. QureshiR. ShahA. MuneerA. IrfanM. ZafarA. ShaikhM. B. AkhtarN. WuJ. MirjaliliS. 2023 A survey on large language models: applications, challenges, limitations, and practical usage TechRxiv https://doi.org/10.36227/techrxiv.23589741.v1 Search in Google Scholar

Pan, J. Z., Razniewski, S., Kalo, J., Singhania, S., Chen, J., Dietze, S., Jabeen, H., Omeliyanenko, J., Zhang, W., Lissandrini, M., Biswas, R., De Melo, G., Bonifati, A., Vakaj, E., Dragoni, M., & Graux, D. (2023). Large language models and knowledge graphs: Opportunities and challenges. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2308.06374 PanJ. Z. RazniewskiS. KaloJ. SinghaniaS. ChenJ. DietzeS. JabeenH. OmeliyanenkoJ. ZhangW. LissandriniM. BiswasR. De MeloG. BonifatiA. VakajE. DragoniM. GrauxD. 2023 Large language models and knowledge graphs: Opportunities and challenges arXiv (Cornell University) https://doi.org/10.48550/arxiv.2308.06374 Search in Google Scholar

Shanker, S., & King, B. J. (2002). The emergence of a new paradigm in ape language research. Behavioral and Brain Sciences, 25(5), 605–620. https://doi.org/10.1017/s0140525x02000110 ShankerS. KingB. J. 2002 The emergence of a new paradigm in ape language research Behavioral and Brain Sciences 25 5 605 620 https://doi.org/10.1017/s0140525x02000110 Search in Google Scholar

Albahri, A. S., Duhaim, A. M., Fadhel, M. A., Alnoor, A., Baqer, N. S., Alzubaidi, L., Albahri, O. S., Alamoodi, A. H., Bai, J., Salhi, A., Santamaría, J., Ouyang, C., Gupta, A., Gu, Y., & Deveci, M. (2023). A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion. Information Fusion, 96, 156–191. https://doi.org/10.1016/j.inffus.2023.03.008 AlbahriA. S. DuhaimA. M. FadhelM. A. AlnoorA. BaqerN. S. AlzubaidiL. AlbahriO. S. AlamoodiA. H. BaiJ. SalhiA. SantamaríaJ. OuyangC. GuptaA. GuY. DeveciM. 2023 A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion Information Fusion 96 156 191 https://doi.org/10.1016/j.inffus.2023.03.008 Search in Google Scholar

Yliopisto, O., Juustila, A., Rajanen, D., & Rajanen, D. (2017, March 14). Cloud computing: migrating to the cloud, Amazon Web Services and Google Cloud Platform. OuluREPO. https://urn.fi/URN:NBN:fi:oulu-201703151365 YliopistoO. JuustilaA. RajanenD. RajanenD. 2017 March 14 Cloud computing: migrating to the cloud, Amazon Web Services and Google Cloud Platform OuluREPO https://urn.fi/URN:NBN:fi:oulu-201703151365 Search in Google Scholar

Kianian, R., Sun, D., Crowell, E. L., & Tsui, E. (2024). The Use of Large Language Models to Generate Education Materials about Uveitis. Ophthalmology Retina, 8(2), 195–201. https://doi.org/10.1016/j.oret.2023.09.008 KianianR. SunD. CrowellE. L. TsuiE. 2024 The Use of Large Language Models to Generate Education Materials about Uveitis Ophthalmology Retina 8 2 195 201 https://doi.org/10.1016/j.oret.2023.09.008 Search in Google Scholar

Yada, Divakar, et al. “Automatic Text Summarization Methods: A Comprehensive Review” arXiv preprint arXiv:2204.01849 (2022). YadaDivakar “Automatic Text Summarization Methods: A Comprehensive Review” arXiv preprint arXiv:2204.01849 2022 Search in Google Scholar

Grabeel, K. L., Russomanno, J., Oelschlegel, S., Tester, E., & Heidel, R. E. (2018). Computerized versus hand-scored health literacy tools: a comparison of Simple Measure of Gobbledygook (SMOG) and Flesch-Kincaid in printed patient education materials. Journal of the Medical Library Association, 106(1). https://doi.org/10.5195/jmla.2018.262 GrabeelK. L. RussomannoJ. OelschlegelS. TesterE. HeidelR. E. 2018 Computerized versus hand-scored health literacy tools: a comparison of Simple Measure of Gobbledygook (SMOG) and Flesch-Kincaid in printed patient education materials Journal of the Medical Library Association 106 1 https://doi.org/10.5195/jmla.2018.262 Search in Google Scholar

Eid, K., Eid, A. A., Wang, D., Raiker, R. S., Chen, S., & Nguyen, J. (2023). Optimizing Ophthalmology patient education via ChatBot-Generated Materials: Readability analysis of AI-Generated Patient Education materials and the American Society of Ophthalmic Plastic and Reconstructive Surgery patient Brochures. Ophthalmic Plastic and Reconstructive Surgery. https://doi.org/10.1097/iop.0000000000002549 EidK. EidA. A. WangD. RaikerR. S. ChenS. NguyenJ. 2023 Optimizing Ophthalmology patient education via ChatBot-Generated Materials: Readability analysis of AI-Generated Patient Education materials and the American Society of Ophthalmic Plastic and Reconstructive Surgery patient Brochures Ophthalmic Plastic and Reconstructive Surgery https://doi.org/10.1097/iop.0000000000002549 Search in Google Scholar

Hwang YH, Um J, Pradhan B, Choudhury T, Schlüter S. How does ChatGPT evaluate the value of spatial information in the 4th industrial revolution? Spatial Information Research. December 2023. doi:10.1007/s41324-023-00567-5 HwangYH UmJ PradhanB ChoudhuryT SchlüterS How does ChatGPT evaluate the value of spatial information in the 4th industrial revolution Spatial Information Research December 2023 10.1007/s41324-023-00567-5 Open DOISearch in Google Scholar

Pal A, Sankarasubbu M. Gemini goes to Med School: exploring the capabilities of multimodal large language models on medical challenge problems & hallucinations. arXiv (Cornell University). February 2024. doi:10.48550/arxiv.2402.07023 PalA SankarasubbuM Gemini goes to Med School: exploring the capabilities of multimodal large language models on medical challenge problems & hallucinations arXiv (Cornell University) February 2024 10.48550/arxiv.2402.07023 Open DOISearch in Google Scholar

Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., & Gao, J. (2024). Large Language Models: a survey. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2402.061 MinaeeS. MikolovT. NikzadN. ChenaghluM. SocherR. AmatriainX. GaoJ. 2024 Large Language Models: a survey arXiv (Cornell University) https://doi.org/10.48550/arxiv.2402.061 Search in Google Scholar

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. arXiv (Cornell University). Published online June 12, 2017. doi:10.48550/arxiv.1706.03762 VaswaniA ShazeerN ParmarN Attention is all you need arXiv (Cornell University) Published online June 12, 2017. 10.48550/arxiv.1706.03762 Open DOISearch in Google Scholar

Zhu W, Liu H, Dong Q, et al. Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis. arXiv (Cornell University). Published online April 10, 2023. doi:10.48550/arxiv.2304.04675 ZhuW LiuH DongQ Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis arXiv (Cornell University) Published online April 10, 2023. 10.48550/arxiv.2304.04675 Open DOISearch in Google Scholar

Van Veen D, Van Uden C, Blankemeier L, et al. Clinical text summarization: Adapting large language models can outperform human experts. arXiv (Cornell University). Published online September 14, 2023. doi:10.48550/arxiv.2309.07430 Van VeenD Van UdenC BlankemeierL Clinical text summarization: Adapting large language models can outperform human experts arXiv (Cornell University) Published online September 14, 2023. 10.48550/arxiv.2309.07430 Open DOISearch in Google Scholar

Xiao L, Wang L, He H, Jin Y. Modeling Content Importance for Summarization with Pre-trained Language Models. 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Published online January 1, 2020. doi:10.18653/v1/2020.emnlp-main.293 XiaoL WangL HeH JinY Modeling Content Importance for Summarization with Pre-trained Language Models 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) Published online January 1, 2020. 10.18653/v1/2020.emnlp-main.293 Open DOISearch in Google Scholar

Bajaj A, Dangati P, Krishna K, et al. Long Document Summarization in a Low Resource Setting using Pretrained Language Models. arXiv (Cornell University). Published online February 28, 2021. doi:10.48550/arxiv.2103.00751 BajajA DangatiP KrishnaK Long Document Summarization in a Low Resource Setting using Pretrained Language Models arXiv (Cornell University) Published online February 28, 2021. 10.48550/arxiv.2103.00751 Open DOISearch in Google Scholar

Wang Q, Liu D, Cao Y, et al. Recursively summarizing enables Long-Term dialogue memory in large language models. arXiv (Cornell University). Published online August 29, 2023. doi:10.48550/arxiv.2308.15022 WangQ LiuD CaoY Recursively summarizing enables Long-Term dialogue memory in large language models arXiv (Cornell University) Published online August 29, 2023. 10.48550/arxiv.2308.15022 Open DOISearch in Google Scholar

Zhang T, Ladhak F, Durmus E, Liang P, McKeown K, Hashimoto T. Benchmarking large language models for news summarization. arXiv (Cornell University). Published online January 31, 2023. doi:10.48550/arxiv.2301.13848 ZhangT LadhakF DurmusE LiangP McKeownK HashimotoT Benchmarking large language models for news summarization arXiv (Cornell University) Published online January 31, 2023. 10.48550/arxiv.2301.13848 Open DOISearch in Google Scholar

Eleyan D, Othman A, Eleyan A. Enhancing software comments readability using Flesch Reading Ease Score. Information. 2020;11(9):430. doi:10.3390/info11090430 EleyanD OthmanA EleyanA Enhancing software comments readability using Flesch Reading Ease Score Information 2020 11 9 430 10.3390/info11090430 Open DOISearch in Google Scholar

Moncada FM, Pabico JP. On GobbleDyGook and Mood of the Philippine Senate: an exploratory study on the readability and sentiment of selected Philippine senators’ microposts. arXiv (Cornell University). Published online August 6, 2015. https://arxiv.org/pdf/1508.01321.pdf MoncadaFM PabicoJP On GobbleDyGook and Mood of the Philippine Senate: an exploratory study on the readability and sentiment of selected Philippine senators’ microposts arXiv (Cornell University) Published online August 6, 2015. https://arxiv.org/pdf/1508.01321.pdf Search in Google Scholar

Alawad D, Panta M, Zibran MF, Islam R. An Empirical Study of the Relationships between Code Readability and Software Complexity. arXiv (Cornell University). Published online August 30, 2019. https://arxiv.org/pdf/1909.01760 AlawadD PantaM ZibranMF IslamR An Empirical Study of the Relationships between Code Readability and Software Complexity arXiv (Cornell University) Published online August 30, 2019. https://arxiv.org/pdf/1909.01760 Search in Google Scholar

Sari DC. Measuring Quality of Reading materials in English textbook: The use of lexical density method in assessing complexity of reading materials of Indonesia’s Curriculum – 13 (K13) English Textbook Dian Sari. Journal of Applied Linguistics and Literature. 2018;1(2):30–39. doi:10.33369/joall.v1i2.4177 SariDC Measuring Quality of Reading materials in English textbook: The use of lexical density method in assessing complexity of reading materials of Indonesia’s Curriculum – 13 (K13) English Textbook Dian Sari Journal of Applied Linguistics and Literature 2018 1 2 30 39 10.33369/joall.v1i2.4177 Open DOISearch in Google Scholar

Mihalcea R, Corley CD, Strapparava C. Corpus-based and knowledge-based measures of text semantic similarity. ResearchGate. Published online January 1, 2006. https://www.researchgate.net/publication/221606405_Corpus-based_and_Knowledge-based_Measures_of_Text_Semantic_Similarity MihalceaR CorleyCD StrapparavaC Corpus-based and knowledge-based measures of text semantic similarity ResearchGate Published online January 1, 2006. https://www.researchgate.net/publication/221606405_Corpus-based_and_Knowledge-based_Measures_of_Text_Semantic_Similarity Search in Google Scholar

Shen, T., Jin, R., Huang, Y., Liu, C., Dong, W., Guo, Z. J., Wu, X., Liu, Y., & Xiong, D. (2023). Large Language Model alignment: a survey. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2309.15025 ShenT. JinR. HuangY. LiuC. DongW. GuoZ. J. WuX. LiuY. XiongD. 2023 Large Language Model alignment: a survey arXiv (Cornell University) https://doi.org/10.48550/arxiv.2309.15025 Search in Google Scholar

Jin H, Yang Z, Meng D, Wang J, Tan J. A Comprehensive Survey on Process-Oriented Automatic Text Summarization with Exploration of LLM-Based Methods. arXiv (Cornell University). March 2024. doi:10.48550/arxiv.2403.02901 JinH YangZ MengD WangJ TanJ A Comprehensive Survey on Process-Oriented Automatic Text Summarization with Exploration of LLM-Based Methods arXiv (Cornell University) March 2024 10.48550/arxiv.2403.02901 Open DOISearch in Google Scholar

Yadav D, Desai J, Yadav AK. Automatic Text Summarization Methods: A Comprehensive Review. arXiv (Cornell University). March 2022. doi:10.48550/arxiv.2204.01849 YadavD DesaiJ YadavAK Automatic Text Summarization Methods: A Comprehensive Review arXiv (Cornell University) March 2022 10.48550/arxiv.2204.01849 Open DOISearch in Google Scholar

https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models [date accessed: 15th February, 2024] https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models [date accessed: 15th February, 2024] Search in Google Scholar

https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=392017b560ba [Date accessed: 11th January, 2024) https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=392017b560ba [Date accessed: 11th January, 2024) Search in Google Scholar

Zaretsky J, Kim JM, Baskharoun S, et al. Generative Artificial Intelligence to Transform Inpatient Discharge Summaries to Patient-Friendly Language and Format. JAMA Netw Open. 2024;7(3):e240357. doi:10.1001/jamanetworkopen.2024.0357 ZaretskyJ KimJM BaskharounS Generative Artificial Intelligence to Transform Inpatient Discharge Summaries to Patient-Friendly Language and Format JAMA Netw Open 2024 7 3 e240357 10.1001/jamanetworkopen.2024.0357 Open DOISearch in Google Scholar

Raja, H., & Lodhi, S. (2024). Assessing the readability and quality of online information on anosmia. Annals of the Royal College of Surgeons of England, 106(2), 178–184. https://doi.org/10.1308/rcsann.2022.0147 RajaH. LodhiS. 2024 Assessing the readability and quality of online information on anosmia Annals of the Royal College of Surgeons of England 106 2 178 184 https://doi.org/10.1308/rcsann.2022.0147 Search in Google Scholar

Shet, S. S., Murphy, B., Boran, S., & Taylor, C. (2024). Readability of online information for parents concerning Paediatric In-Toeing: An analysis of the most popular online public sources. Curēus. https://doi.org/10.7759/cureus.57268 ShetS. S. MurphyB. BoranS. TaylorC. 2024 Readability of online information for parents concerning Paediatric In-Toeing: An analysis of the most popular online public sources Curēus https://doi.org/10.7759/cureus.57268 Search in Google Scholar

Clavié, B., Ciceu, A., Naylor, F., Soulié, G., & Brightwell, T. (2023). Large Language Models in the workplace: A case study on prompt Engineering for job type classification. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2303.07142 ClaviéB. CiceuA. NaylorF. SouliéG. BrightwellT. 2023 Large Language Models in the workplace: A case study on prompt Engineering for job type classification arXiv (Cornell University) https://doi.org/10.48550/arxiv.2303.07142 Search in Google Scholar

Langue:
Anglais
Périodicité:
1 fois par an
Sujets de la revue:
Ingénierie, Présentations et aperçus, Ingénierie, autres