Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology SydneyAustralia
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Jin, H., Yang, Z., Meng, D., Wang, J., & Tan, J. (2024). A Comprehensive Survey on Process-Oriented Automatic Text Summarization with Exploration of LLM-Based Methods. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2403.02901JinH.YangZ.MengD.WangJ.TanJ.2024A Comprehensive Survey on Process-Oriented Automatic Text Summarization with Exploration of LLM-Based MethodsarXiv (Cornell University)https://doi.org/10.48550/arxiv.2403.02901Search in Google Scholar
Brown, Tom B. “Language models are few-shot learners.” arXiv preprint arXiv:2005.14165 (2020).BrownTom B.“Language models are few-shot learners.”arXiv preprint arXiv:2005.141652020Search in Google Scholar
Chowdhery, Aakanksha, et al. “PaLM: Scaling language modeling with pathways.” arXiv preprint arXiv:2204.02311 (2023).ChowdheryAakanksha“PaLM: Scaling language modeling with pathways.”arXiv preprint arXiv:2204.023112023Search in Google Scholar
Widyassari, A. P., Rustad, S., Shidik, G. F., Noersasongko, E., Syukur, A., Affandy, A., & Setiadi, D. R. I. M. (2022). Review of automatic text summarization techniques & methods. Journal of King Saud University - Computer and Information Sciences, 34(4), 1029–1046. https://doi.org/10.1016/j.jksuci.2020.05.006WidyassariA. P.RustadS.ShidikG. F.NoersasongkoE.SyukurA.AffandyA.SetiadiD. R. I. M.2022Review of automatic text summarization techniques & methodsJournal of King Saud University - Computer and Information Sciences34410291046https://doi.org/10.1016/j.jksuci.2020.05.006Search in Google Scholar
Zhang, M., Zhou, G., Yu, W., Huang, N., & Liu, W. (2022). A comprehensive survey of abstractive text summarization based on deep learning. Computational Intelligence and Neuroscience, 2022, 1–21. https://doi.org/10.1155/2022/7132226ZhangM.ZhouG.YuW.HuangN.LiuW.2022A comprehensive survey of abstractive text summarization based on deep learningComputational Intelligence and Neuroscience2022121https://doi.org/10.1155/2022/7132226Search in Google Scholar
A survey of automatic text Summarization: progress, process and challenges. (2021). IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/9623462/A survey of automatic text Summarization: progress, process and challenges2021IEEE Journals & Magazine | IEEE Xplorehttps://ieeexplore.ieee.org/abstract/document/9623462/Search in Google Scholar
Gatt, A., & Krahmer, E. (2018). Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation. Journal of Artificial Intelligence Research, 61, 65–170. https://doi.org/10.1613/jair.5477GattA.KrahmerE.2018Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluationJournal of Artificial Intelligence Research6165170https://doi.org/10.1613/jair.5477Search in Google Scholar
Hadi, M. U., Tashi, Q. A., Qureshi, R., Shah, A., Muneer, A., Irfan, M., Zafar, A., Shaikh, M. B., Akhtar, N., Wu, J., & Mirjalili, S. (2023). A survey on large language models: applications, challenges, limitations, and practical usage. TechRxiv. https://doi.org/10.36227/techrxiv.23589741.v1HadiM. U.TashiQ. A.QureshiR.ShahA.MuneerA.IrfanM.ZafarA.ShaikhM. B.AkhtarN.WuJ.MirjaliliS.2023A survey on large language models: applications, challenges, limitations, and practical usageTechRxivhttps://doi.org/10.36227/techrxiv.23589741.v1Search in Google Scholar
Pan, J. Z., Razniewski, S., Kalo, J., Singhania, S., Chen, J., Dietze, S., Jabeen, H., Omeliyanenko, J., Zhang, W., Lissandrini, M., Biswas, R., De Melo, G., Bonifati, A., Vakaj, E., Dragoni, M., & Graux, D. (2023). Large language models and knowledge graphs: Opportunities and challenges. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2308.06374PanJ. Z.RazniewskiS.KaloJ.SinghaniaS.ChenJ.DietzeS.JabeenH.OmeliyanenkoJ.ZhangW.LissandriniM.BiswasR.De MeloG.BonifatiA.VakajE.DragoniM.GrauxD.2023Large language models and knowledge graphs: Opportunities and challengesarXiv (Cornell University)https://doi.org/10.48550/arxiv.2308.06374Search in Google Scholar
Shanker, S., & King, B. J. (2002). The emergence of a new paradigm in ape language research. Behavioral and Brain Sciences, 25(5), 605–620. https://doi.org/10.1017/s0140525x02000110ShankerS.KingB. J.2002The emergence of a new paradigm in ape language researchBehavioral and Brain Sciences255605620https://doi.org/10.1017/s0140525x02000110Search in Google Scholar
Albahri, A. S., Duhaim, A. M., Fadhel, M. A., Alnoor, A., Baqer, N. S., Alzubaidi, L., Albahri, O. S., Alamoodi, A. H., Bai, J., Salhi, A., Santamaría, J., Ouyang, C., Gupta, A., Gu, Y., & Deveci, M. (2023). A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion. Information Fusion, 96, 156–191. https://doi.org/10.1016/j.inffus.2023.03.008AlbahriA. S.DuhaimA. M.FadhelM. A.AlnoorA.BaqerN. S.AlzubaidiL.AlbahriO. S.AlamoodiA. H.BaiJ.SalhiA.SantamaríaJ.OuyangC.GuptaA.GuY.DeveciM.2023A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusionInformation Fusion96156191https://doi.org/10.1016/j.inffus.2023.03.008Search in Google Scholar
Yliopisto, O., Juustila, A., Rajanen, D., & Rajanen, D. (2017, March 14). Cloud computing: migrating to the cloud, Amazon Web Services and Google Cloud Platform. OuluREPO. https://urn.fi/URN:NBN:fi:oulu-201703151365YliopistoO.JuustilaA.RajanenD.RajanenD.2017March14Cloud computing: migrating to the cloud, Amazon Web Services and Google Cloud PlatformOuluREPOhttps://urn.fi/URN:NBN:fi:oulu-201703151365Search in Google Scholar
Kianian, R., Sun, D., Crowell, E. L., & Tsui, E. (2024). The Use of Large Language Models to Generate Education Materials about Uveitis. Ophthalmology Retina, 8(2), 195–201. https://doi.org/10.1016/j.oret.2023.09.008KianianR.SunD.CrowellE. L.TsuiE.2024The Use of Large Language Models to Generate Education Materials about UveitisOphthalmology Retina82195201https://doi.org/10.1016/j.oret.2023.09.008Search in Google Scholar
Yada, Divakar, et al. “Automatic Text Summarization Methods: A Comprehensive Review” arXiv preprint arXiv:2204.01849 (2022).YadaDivakar“Automatic Text Summarization Methods: A Comprehensive Review”arXiv preprint arXiv:2204.018492022Search in Google Scholar
Grabeel, K. L., Russomanno, J., Oelschlegel, S., Tester, E., & Heidel, R. E. (2018). Computerized versus hand-scored health literacy tools: a comparison of Simple Measure of Gobbledygook (SMOG) and Flesch-Kincaid in printed patient education materials. Journal of the Medical Library Association, 106(1). https://doi.org/10.5195/jmla.2018.262GrabeelK. L.RussomannoJ.OelschlegelS.TesterE.HeidelR. E.2018Computerized versus hand-scored health literacy tools: a comparison of Simple Measure of Gobbledygook (SMOG) and Flesch-Kincaid in printed patient education materialsJournal of the Medical Library Association1061https://doi.org/10.5195/jmla.2018.262Search in Google Scholar
Eid, K., Eid, A. A., Wang, D., Raiker, R. S., Chen, S., & Nguyen, J. (2023). Optimizing Ophthalmology patient education via ChatBot-Generated Materials: Readability analysis of AI-Generated Patient Education materials and the American Society of Ophthalmic Plastic and Reconstructive Surgery patient Brochures. Ophthalmic Plastic and Reconstructive Surgery. https://doi.org/10.1097/iop.0000000000002549EidK.EidA. A.WangD.RaikerR. S.ChenS.NguyenJ.2023Optimizing Ophthalmology patient education via ChatBot-Generated Materials: Readability analysis of AI-Generated Patient Education materials and the American Society of Ophthalmic Plastic and Reconstructive Surgery patient BrochuresOphthalmic Plastic and Reconstructive Surgeryhttps://doi.org/10.1097/iop.0000000000002549Search in Google Scholar
Hwang YH, Um J, Pradhan B, Choudhury T, Schlüter S. How does ChatGPT evaluate the value of spatial information in the 4th industrial revolution? Spatial Information Research. December 2023. doi:10.1007/s41324-023-00567-5HwangYHUmJPradhanBChoudhuryTSchlüterSHow does ChatGPT evaluate the value of spatial information in the 4th industrial revolutionSpatial Information ResearchDecember202310.1007/s41324-023-00567-5Open DOISearch in Google Scholar
Pal A, Sankarasubbu M. Gemini goes to Med School: exploring the capabilities of multimodal large language models on medical challenge problems & hallucinations. arXiv (Cornell University). February 2024. doi:10.48550/arxiv.2402.07023PalASankarasubbuMGemini goes to Med School: exploring the capabilities of multimodal large language models on medical challenge problems & hallucinationsarXiv (Cornell University)February202410.48550/arxiv.2402.07023Open DOISearch in Google Scholar
Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., & Gao, J. (2024). Large Language Models: a survey. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2402.061MinaeeS.MikolovT.NikzadN.ChenaghluM.SocherR.AmatriainX.GaoJ.2024Large Language Models: a surveyarXiv (Cornell University)https://doi.org/10.48550/arxiv.2402.061Search in Google Scholar
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. arXiv (Cornell University). Published online June 12, 2017. doi:10.48550/arxiv.1706.03762VaswaniAShazeerNParmarNAttention is all you needarXiv (Cornell University)Published online June 12, 2017.10.48550/arxiv.1706.03762Open DOISearch in Google Scholar
Zhu W, Liu H, Dong Q, et al. Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis. arXiv (Cornell University). Published online April 10, 2023. doi:10.48550/arxiv.2304.04675ZhuWLiuHDongQMultilingual Machine Translation with Large Language Models: Empirical Results and AnalysisarXiv (Cornell University)Published online April 10, 2023.10.48550/arxiv.2304.04675Open DOISearch in Google Scholar
Van Veen D, Van Uden C, Blankemeier L, et al. Clinical text summarization: Adapting large language models can outperform human experts. arXiv (Cornell University). Published online September 14, 2023. doi:10.48550/arxiv.2309.07430Van VeenDVan UdenCBlankemeierLClinical text summarization: Adapting large language models can outperform human expertsarXiv (Cornell University)Published online September 14, 2023.10.48550/arxiv.2309.07430Open DOISearch in Google Scholar
Xiao L, Wang L, He H, Jin Y. Modeling Content Importance for Summarization with Pre-trained Language Models. 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Published online January 1, 2020. doi:10.18653/v1/2020.emnlp-main.293XiaoLWangLHeHJinYModeling Content Importance for Summarization with Pre-trained Language Models2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)Published online January 1, 2020.10.18653/v1/2020.emnlp-main.293Open DOISearch in Google Scholar
Bajaj A, Dangati P, Krishna K, et al. Long Document Summarization in a Low Resource Setting using Pretrained Language Models. arXiv (Cornell University). Published online February 28, 2021. doi:10.48550/arxiv.2103.00751BajajADangatiPKrishnaKLong Document Summarization in a Low Resource Setting using Pretrained Language ModelsarXiv (Cornell University)Published online February 28, 2021.10.48550/arxiv.2103.00751Open DOISearch in Google Scholar
Wang Q, Liu D, Cao Y, et al. Recursively summarizing enables Long-Term dialogue memory in large language models. arXiv (Cornell University). Published online August 29, 2023. doi:10.48550/arxiv.2308.15022WangQLiuDCaoYRecursively summarizing enables Long-Term dialogue memory in large language modelsarXiv (Cornell University)Published online August 29, 2023.10.48550/arxiv.2308.15022Open DOISearch in Google Scholar
Zhang T, Ladhak F, Durmus E, Liang P, McKeown K, Hashimoto T. Benchmarking large language models for news summarization. arXiv (Cornell University). Published online January 31, 2023. doi:10.48550/arxiv.2301.13848ZhangTLadhakFDurmusELiangPMcKeownKHashimotoTBenchmarking large language models for news summarizationarXiv (Cornell University)Published online January 31, 2023.10.48550/arxiv.2301.13848Open DOISearch in Google Scholar
Eleyan D, Othman A, Eleyan A. Enhancing software comments readability using Flesch Reading Ease Score. Information. 2020;11(9):430. doi:10.3390/info11090430EleyanDOthmanAEleyanAEnhancing software comments readability using Flesch Reading Ease ScoreInformation202011943010.3390/info11090430Open DOISearch in Google Scholar
Moncada FM, Pabico JP. On GobbleDyGook and Mood of the Philippine Senate: an exploratory study on the readability and sentiment of selected Philippine senators’ microposts. arXiv (Cornell University). Published online August 6, 2015. https://arxiv.org/pdf/1508.01321.pdfMoncadaFMPabicoJPOn GobbleDyGook and Mood of the Philippine Senate: an exploratory study on the readability and sentiment of selected Philippine senators’ micropostsarXiv (Cornell University)Published online August 6, 2015. https://arxiv.org/pdf/1508.01321.pdfSearch in Google Scholar
Alawad D, Panta M, Zibran MF, Islam R. An Empirical Study of the Relationships between Code Readability and Software Complexity. arXiv (Cornell University). Published online August 30, 2019. https://arxiv.org/pdf/1909.01760AlawadDPantaMZibranMFIslamRAn Empirical Study of the Relationships between Code Readability and Software ComplexityarXiv (Cornell University)Published online August 30, 2019. https://arxiv.org/pdf/1909.01760Search in Google Scholar
Sari DC. Measuring Quality of Reading materials in English textbook: The use of lexical density method in assessing complexity of reading materials of Indonesia’s Curriculum – 13 (K13) English Textbook Dian Sari. Journal of Applied Linguistics and Literature. 2018;1(2):30–39. doi:10.33369/joall.v1i2.4177SariDCMeasuring Quality of Reading materials in English textbook: The use of lexical density method in assessing complexity of reading materials of Indonesia’s Curriculum – 13 (K13) English Textbook Dian SariJournal of Applied Linguistics and Literature201812303910.33369/joall.v1i2.4177Open DOISearch in Google Scholar
Mihalcea R, Corley CD, Strapparava C. Corpus-based and knowledge-based measures of text semantic similarity. ResearchGate. Published online January 1, 2006. https://www.researchgate.net/publication/221606405_Corpus-based_and_Knowledge-based_Measures_of_Text_Semantic_SimilarityMihalceaRCorleyCDStrapparavaCCorpus-based and knowledge-based measures of text semantic similarityResearchGatePublished online January 1, 2006. https://www.researchgate.net/publication/221606405_Corpus-based_and_Knowledge-based_Measures_of_Text_Semantic_SimilaritySearch in Google Scholar
Shen, T., Jin, R., Huang, Y., Liu, C., Dong, W., Guo, Z. J., Wu, X., Liu, Y., & Xiong, D. (2023). Large Language Model alignment: a survey. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2309.15025ShenT.JinR.HuangY.LiuC.DongW.GuoZ. J.WuX.LiuY.XiongD.2023Large Language Model alignment: a surveyarXiv (Cornell University)https://doi.org/10.48550/arxiv.2309.15025Search in Google Scholar
Jin H, Yang Z, Meng D, Wang J, Tan J. A Comprehensive Survey on Process-Oriented Automatic Text Summarization with Exploration of LLM-Based Methods. arXiv (Cornell University). March 2024. doi:10.48550/arxiv.2403.02901JinHYangZMengDWangJTanJA Comprehensive Survey on Process-Oriented Automatic Text Summarization with Exploration of LLM-Based MethodsarXiv (Cornell University)March202410.48550/arxiv.2403.02901Open DOISearch in Google Scholar
Yadav D, Desai J, Yadav AK. Automatic Text Summarization Methods: A Comprehensive Review. arXiv (Cornell University). March 2022. doi:10.48550/arxiv.2204.01849YadavDDesaiJYadavAKAutomatic Text Summarization Methods: A Comprehensive ReviewarXiv (Cornell University)March202210.48550/arxiv.2204.01849Open DOISearch in Google Scholar
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models [date accessed: 15th February, 2024]https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models [date accessed: 15th February, 2024]Search in Google Scholar
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=392017b560ba [Date accessed: 11th January, 2024)https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=392017b560ba [Date accessed: 11th January, 2024)Search in Google Scholar
Zaretsky J, Kim JM, Baskharoun S, et al. Generative Artificial Intelligence to Transform Inpatient Discharge Summaries to Patient-Friendly Language and Format. JAMA Netw Open. 2024;7(3):e240357. doi:10.1001/jamanetworkopen.2024.0357ZaretskyJKimJMBaskharounSGenerative Artificial Intelligence to Transform Inpatient Discharge Summaries to Patient-Friendly Language and FormatJAMA Netw Open202473e24035710.1001/jamanetworkopen.2024.0357Open DOISearch in Google Scholar
Raja, H., & Lodhi, S. (2024). Assessing the readability and quality of online information on anosmia. Annals of the Royal College of Surgeons of England, 106(2), 178–184. https://doi.org/10.1308/rcsann.2022.0147RajaH.LodhiS.2024Assessing the readability and quality of online information on anosmiaAnnals of the Royal College of Surgeons of England1062178184https://doi.org/10.1308/rcsann.2022.0147Search in Google Scholar
Shet, S. S., Murphy, B., Boran, S., & Taylor, C. (2024). Readability of online information for parents concerning Paediatric In-Toeing: An analysis of the most popular online public sources. Curēus. https://doi.org/10.7759/cureus.57268ShetS. S.MurphyB.BoranS.TaylorC.2024Readability of online information for parents concerning Paediatric In-Toeing: An analysis of the most popular online public sourcesCurēushttps://doi.org/10.7759/cureus.57268Search in Google Scholar
Clavié, B., Ciceu, A., Naylor, F., Soulié, G., & Brightwell, T. (2023). Large Language Models in the workplace: A case study on prompt Engineering for job type classification. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2303.07142ClaviéB.CiceuA.NaylorF.SouliéG.BrightwellT.2023Large Language Models in the workplace: A case study on prompt Engineering for job type classificationarXiv (Cornell University)https://doi.org/10.48550/arxiv.2303.07142Search in Google Scholar