À propos de cet article

Citez

M. Goldstein and S. Uchida, “A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data,” PLoS One, vol. 11, no. 4, p. e0152173, Apr. 2016, doi: 10.1371/JOURNAL.PONE.0152173. GoldsteinM. UchidaS. “A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data,” PLoS One 11 4 e0152173 Apr. 2016 10.1371/JOURNAL.PONE.0152173 Open DOISearch in Google Scholar

V. Garcia-Font, C. Garrigues, and H. Rifà-Pous, “A Comparative Study of Anomaly Detection Techniques for Smart City Wireless Sensor Networks,” Sensors (Basel)., vol. 16, no. 6, Jun. 2016, doi: 10.3390/S16060868. Garcia-FontV. GarriguesC. Rifà-PousH. “A Comparative Study of Anomaly Detection Techniques for Smart City Wireless Sensor Networks,” Sensors (Basel). 16 6 Jun. 2016 10.3390/S16060868 Open DOISearch in Google Scholar

A. Nisioti, A. Mylonas, P. D. Yoo, and V. Katos, “From intrusion detection to attacker attribution: A comprehensive survey of unsupervised methods,” IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 3369–3388, Oct. 2018, doi: 10.1109/COMST.2018.2854724. NisiotiA. MylonasA. YooP. D. KatosV. “From intrusion detection to attacker attribution: A comprehensive survey of unsupervised methods,” IEEE Commun. Surv. Tutorials 20 4 3369 3388 Oct. 2018 10.1109/COMST.2018.2854724 Open DOISearch in Google Scholar

F. Falcão et al., “Quantitative comparison of unsupervised anomaly detection algorithms for intrusion detection,” Proc. ACM Symp. Appl. Comput., vol. Part F147772, pp. 318–327, 2019, doi: 10.1145/3297280.3297314. FalcãoF. “Quantitative comparison of unsupervised anomaly detection algorithms for intrusion detection,” Proc. ACM Symp. Appl. Comput. vol. Part F147772, 318 327 2019 10.1145/3297280.3297314 Open DOISearch in Google Scholar

T. Saranya, S. Sridevi, C. Deisy, T. D. Chung, and M. K. A. A. Khan, “Performance Analysis of Machine Learning Algorithms in Intrusion Detection System: A Review,” Procedia Comput. Sci., vol. 171, pp. 1251–1260, Jan. 2020, doi: 10.1016/J.PROCS.2020.04.133. SaranyaT. SrideviS. DeisyC. ChungT. D. KhanM. K. A. A. “Performance Analysis of Machine Learning Algorithms in Intrusion Detection System: A Review,” Procedia Comput. Sci. 171 1251 1260 Jan. 2020 10.1016/J.PROCS.2020.04.133 Open DOISearch in Google Scholar

A. Thakkar and R. Lohiya, “A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions,” Artif. Intell. Rev., vol. 55, no. 1, pp. 453–563, Jan. 2022, doi: 10.1007/S10462-021-10037-9/FIGURES/15. ThakkarA. LohiyaR. “A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions,” Artif. Intell. Rev. 55 1 453 563 Jan. 2022 10.1007/S10462-021-10037-9/FIGURES/15 Open DOISearch in Google Scholar

D. Samariya and A. Thakkar, “A Comprehensive Survey of Anomaly Detection Algorithms,” Ann. Data Sci., vol. 10, no. 3, pp. 829–850, Jun. 2023, doi: 10.1007/S40745-021-00362-9. SamariyaD. ThakkarA. “A Comprehensive Survey of Anomaly Detection Algorithms,” Ann. Data Sci. 10 3 829 850 Jun. 2023 10.1007/S40745-021-00362-9 Open DOISearch in Google Scholar

A. E. Ezugwu et al., “A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects,” Eng. Appl. Artif. Intell., vol. 110, p. 104743, Apr. 2022, doi: 10.1016/J.ENGAPPAI.2022.104743. EzugwuA. E. “A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects,” Eng. Appl. Artif. Intell. 110 104743 Apr. 2022 10.1016/J.ENGAPPAI.2022.104743 Open DOISearch in Google Scholar

U. A. Usmani, A. Happonen, and J. Watada, “A Review of Unsupervised Machine Learning Frameworks for Anomaly Detection in Industrial Applications,” Lect. Notes Networks Syst., vol. 507 LNNS, pp. 158–189, 2022, doi: 10.1007/978-3-031-10464-0_11/COVER. UsmaniU. A. HapponenA. WatadaJ. “A Review of Unsupervised Machine Learning Frameworks for Anomaly Detection in Industrial Applications,” Lect. Notes Networks Syst. 507 LNNS, 158 189 2022 10.1007/978-3-031-10464-0_11/COVER Open DOISearch in Google Scholar

X. Tao, X. Gong, X. Zhang, S. Yan, and C. Adak, “Deep Learning for Unsupervised Anomaly Localization in Industrial Images: A Survey,” IEEE Trans. Instrum. Meas., vol. 71, 2022, doi: 10.1109/TIM.2022.3196436. TaoX. GongX. ZhangX. YanS. AdakC. “Deep Learning for Unsupervised Anomaly Localization in Industrial Images: A Survey,” IEEE Trans. Instrum. Meas. 71 2022 10.1109/TIM.2022.3196436 Open DOISearch in Google Scholar

M. Q. Ma, Y. Zhao, X. Zhang, and L. Akoglu, “The Need for Unsupervised Outlier Model Selection: A Review and Evaluation of Internal Evaluation Strategies,” Accessed: Jun. 04, 2023. [Online]. Available: https://github.com/yzhao062/uoms. MaM. Q. ZhaoY. ZhangX. AkogluL. “The Need for Unsupervised Outlier Model Selection: A Review and Evaluation of Internal Evaluation Strategies,” Accessed: Jun. 04, 2023. [Online]. Available: https://github.com/yzhao062/uoms. Search in Google Scholar

K. DeMedeiros, A. Hendawi, and M. Alvarez, “A Survey of AI-Based Anomaly Detection in IoT and Sensor Networks,” Sensors 2023, Vol. 23, Page 1352, vol. 23, no. 3, p. 1352, Jan. 2023, doi: 10.3390/S23031352. DeMedeirosK. HendawiA. AlvarezM. “A Survey of AI-Based Anomaly Detection in IoT and Sensor Networks,” Sensors 2023, Vol. 23, Page 1352 23 3 1352 Jan. 2023 10.3390/S23031352 Open DOISearch in Google Scholar

K. Taha, “Semi-supervised and un-supervised clustering: A review and experimental evaluation,” Inf. Syst., vol. 114, p. 102178, Mar. 2023, doi: 10.1016/J.IS.2023.102178. TahaK. “Semi-supervised and un-supervised clustering: A review and experimental evaluation,” Inf. Syst. 114 102178 Mar. 2023 10.1016/J.IS.2023.102178 Open DOISearch in Google Scholar

M. Landauer, S. Onder, F. Skopik, and M. Wurzenberger, “Deep learning for anomaly detection in log data: A survey,” Mach. Learn. with Appl., vol. 12, p. 100470, Jun. 2023, doi: 10.1016/J.MLWA.2023.100470. LandauerM. OnderS. SkopikF. WurzenbergerM. “Deep learning for anomaly detection in log data: A survey,” Mach. Learn. with Appl. 12 100470 Jun. 2023 10.1016/J.MLWA.2023.100470 Open DOISearch in Google Scholar

E. Eskin, “Anomaly Detection over Noisy Data Using Learned Probability Distributions,” 2000, doi: 10.7916/D8C53SKF. EskinE. “Anomaly Detection over Noisy Data Using Learned Probability Distributions,” 2000 10.7916/D8C53SKF Open DOISearch in Google Scholar

A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, “A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection †,” Accessed: Oct. 15, 2022. [Online]. Available: https://epubs.siam.org/terms-privacy. LazarevicA. ErtozL. KumarV. OzgurA. SrivastavaJ. “A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection †,” Accessed: Oct. 15, 2022. [Online]. Available: https://epubs.siam.org/terms-privacy. Search in Google Scholar

M. G. H. Omran, A. P. Engelbrecht, and A. Salman, “An overview of clustering methods,” Intell. Data Anal., vol. 11, pp. 583–605, 2007. OmranM. G. H. EngelbrechtA. P. SalmanA. “An overview of clustering methods,” Intell. Data Anal. 11 583 605 2007 Search in Google Scholar

K. L. Ingham and H. Inoue, “Comparing anomaly detection techniques for HTTP,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4637 LNCS, pp. 42–62, 2007, doi: 10.1007/978-3-540-74320-0_3. InghamK. L. InoueH. “Comparing anomaly detection techniques for HTTP,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 4637 LNCS, 42 62 2007 10.1007/978-3-540-74320-0_3 Open DOISearch in Google Scholar

C. F. Tsai, Y. F. Hsu, C. Y. Lin, and W. Y. Lin, “Intrusion detection by machine learning: A review,” Expert Syst. Appl., vol. 36, no. 10, pp. 11994–12000, Dec. 2009, doi: 10.1016/J.ESWA.2009.05.029. TsaiC. F. HsuY. F. LinC. Y. LinW. Y. “Intrusion detection by machine learning: A review,” Expert Syst. Appl. 36 10 11994 12000 Dec. 2009 10.1016/J.ESWA.2009.05.029 Open DOISearch in Google Scholar

B. G. O. Reddy, B. G. O. Reddy, and D. M. Ussenaiah, “Literature Survey On Clustering Techniques,” Accessed: Jun. 07, 2022. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.467.9888. ReddyB. G. O. ReddyB. G. O. UssenaiahD. M. “Literature Survey On Clustering Techniques,” Accessed: Jun. 07, 2022. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.467.9888. Search in Google Scholar

X. Ding, Y. Li, A. Belatreche, and L. P. Maguire, “An experimental evaluation of novelty detection methods,” Neurocomputing, vol. 135, pp. 313–327, Jul. 2014, doi: 10.1016/J.NEUCOM.2013.12.002. DingX. LiY. BelatrecheA. MaguireL. P. “An experimental evaluation of novelty detection methods,” Neurocomputing 135 313 327 Jul. 2014 10.1016/J.NEUCOM.2013.12.002 Open DOISearch in Google Scholar

D. Xu and Y. Tian, “A Comprehensive Survey of Clustering Algorithms,” Ann. Data Sci. 2015 22, vol. 2, no. 2, pp. 165–193, Aug. 2015, doi: 10.1007/S40745-015-0040-1. XuD. TianY. “A Comprehensive Survey of Clustering Algorithms,” Ann. Data Sci. 2015 22 2 2 165 193 Aug. 2015 10.1007/S40745-015-0040-1 Open DOISearch in Google Scholar

M. Usama et al., “Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges,” IEEE Access, vol. 7, pp. 65579–65615, 2019, doi: 10.1109/ACCESS.2019.2916648. UsamaM. “Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges,” IEEE Access 7 65579 65615 2019 10.1109/ACCESS.2019.2916648 Open DOISearch in Google Scholar

S. Ramaswamy, R. Rastogi, and K. Shim KAIST, “Efficient Algorithms for Mining Outliers from Large Data Sets,” 2000, Accessed: Oct. 03, 2022. [Online]. Available: www.bell-labs.com/projects/serendip. RamaswamyS. RastogiR. Shim KAISTK. “Efficient Algorithms for Mining Outliers from Large Data Sets,” 2000 Accessed: Oct. 03, 2022. [Online]. Available: www.bell-labs.com/projects/serendip. Search in Google Scholar

V. Hautamäki, I. Kärkkäinen, and P. Fränti, “Outlier detection using k-nearest neighbour graph,” Proc. - Int. Conf. Pattern Recognit., vol. 3, pp. 430–433, 2004, doi: 10.1109/ICPR.2004.1334558. HautamäkiV. KärkkäinenI. FräntiP. “Outlier detection using k-nearest neighbour graph,” Proc. - Int. Conf. Pattern Recognit. 3 430 433 2004 10.1109/ICPR.2004.1334558 Open DOISearch in Google Scholar

T. Zoppi, A. ceccarelli, T. Capecchi, and A. Bondavalli, “Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape,” ACM/IMS Trans. Data Sci., vol. 2, no. 2, pp. 1–26, Dec. 2020, doi: 10.48550/arxiv.2012.11354. ZoppiT. ceccarelliA. CapecchiT. BondavalliA. “Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape,” ACM/IMS Trans. Data Sci. 2 2 1 26 Dec. 2020 10.48550/arxiv.2012.11354 Open DOISearch in Google Scholar

M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying Density-Based Local Outliers,” SIGMOD 2000 - Proc. 2000 ACM SIGMOD Int. Conf. Manag. Data, pp. 93–104, 2000, doi: 10.1145/342009.335388. BreunigM. M. KriegelH. P. NgR. T. SanderJ. “LOF: Identifying Density-Based Local Outliers,” SIGMOD 2000 - Proc. 2000 ACM SIGMOD Int. Conf. Manag. Data 93 104 2000 10.1145/342009.335388 Open DOISearch in Google Scholar

“Algorithm selection for Anomaly Detection | by Sahil Garg | Analytics Vidhya | Medium.” https://medium.com/analytics-vidhya/algorithm-selection-for-anomaly-detection-ef193fd0d6d1 “Algorithm selection for Anomaly Detection | by Sahil Garg | Analytics Vidhya | Medium.” https://medium.com/analytics-vidhya/algorithm-selection-for-anomaly-detection-ef193fd0d6d1 Search in Google Scholar

J. Tang, Z. Chen, A. W. C. Fu, and D. W. Cheung, “Enhancing effectiveness of Outlier detections for low Density Patterns,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 2336, pp. 535–548, 2002, doi: 10.1007/3-540-47887-6_53/COVER. TangJ. ChenZ. FuA. W. C. CheungD. W. “Enhancing effectiveness of Outlier detections for low Density Patterns,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 2336 535 548 2002 10.1007/3-540-47887-6_53/COVER Open DOISearch in Google Scholar

E. Schubert, A. Koos, T. Emrich, A. Züfle, K. A. Schmid, and A. Zimek, “A framework for clustering uncertain data,” Proc. VLDB Endow., vol. 8, no. 12, pp. 1976–1979, Aug. 2015, doi: 10.14778/2824032.2824115. SchubertE. KoosA. EmrichT. ZüfleA. SchmidK. A. ZimekA. “A framework for clustering uncertain data,” Proc. VLDB Endow. 8 12 1976 1979 Aug. 2015 10.14778/2824032.2824115 Open DOISearch in Google Scholar

C. Graziano Gentili and T. Zoppi Tutor Co-Tutor Andrea Bondavalli Dott Andrea Ceccarelli Coordinatori Graziano Gentili Cristina Pinotti, “Towards Effective Anomaly Detection in Complex Dynamic Systems,” 2019, Accessed: Nov. 02, 2022. [Online]. Available: https://flore.unifi.it/handle/2158/1119284. C. Graziano Gentili and T. Zoppi Tutor Co-Tutor Andrea Bondavalli Dott Andrea Ceccarelli Coordinatori Graziano Gentili Cristina Pinotti, “Towards Effective Anomaly Detection in Complex Dynamic Systems,” 2019 Accessed: Nov. 02, 2022. [Online]. Available: https://flore.unifi.it/handle/2158/1119284. Search in Google Scholar

Y. G. Jung, M. S. Kang, and J. Heo, “Clustering performance comparison using K-means and expectation maximization algorithms,” Biotechnol. Biotechnol. Equip., vol. 28, pp. S44–S48, 2014, doi: 10.1080/13102818.2014.949045. JungY. G. KangM. S. HeoJ. “Clustering performance comparison using K-means and expectation maximization algorithms,” Biotechnol. Biotechnol. Equip. 28 S44 S48 2014 10.1080/13102818.2014.949045 Open DOISearch in Google Scholar

M. Çelik, F. Dadaşer-Çelik, and A. Ş. Dokuz, “Anomaly detection in temperature data using DBSCAN algorithm,” INISTA 2011 - 2011 Int. Symp. Innov. Intell. Syst. Appl., pp. 91–95, 2011, doi: 10.1109/INISTA.2011.5946052. ÇelikM. Dadaşer-ÇelikF. DokuzA. Ş. “Anomaly detection in temperature data using DBSCAN algorithm,” INISTA 2011 - 2011 Int. Symp. Innov. Intell. Syst. Appl. 91 95 2011 10.1109/INISTA.2011.5946052 Open DOISearch in Google Scholar

M. C. R. Murça, R. John Hansman, H. Balakrishnan, R. Delaura, R. Jordan, and T. Reynolds, “Trajectory clustering and classification for characterization of air traffic flows,” 16th AIAA Aviat. Technol. Integr. Oper. Conf., 2016, doi: 10.2514/6.2016-3760. MurçaM. C. R. John HansmanR. BalakrishnanH. DelauraR. JordanR. ReynoldsT. “Trajectory clustering and classification for characterization of air traffic flows,” 16th AIAA Aviat. Technol. Integr. Oper. Conf. 2016 10.2514/6.2016-3760 Open DOISearch in Google Scholar

J. Li and D. G. Mani, “Machine Learning Application on Prediction of Male Breast Cancer with PLCO Dataset,” J. Student Res., vol. 10, no. 3, Nov. 2021, doi: 10.47611/jsrhs.v10i3.2199. LiJ. ManiD. G. “Machine Learning Application on Prediction of Male Breast Cancer with PLCO Dataset,” J. Student Res. 10 3 Nov. 2021 10.47611/jsrhs.v10i3.2199 Open DOISearch in Google Scholar

R. Abdulhammed, M. Faezipour, H. Musafer, and A. Abuzneid, “Efficient network intrusion detection using PCA-based dimensionality reduction of features,” 2019 Int. Symp. Networks, Comput. Commun. ISNCC 2019, Jun. 2019, doi: 10.1109/ISNCC.2019.8909140. AbdulhammedR. FaezipourM. MusaferH. AbuzneidA. “Efficient network intrusion detection using PCA-based dimensionality reduction of features,” 2019 Int. Symp. Networks, Comput. Commun. ISNCC 2019 Jun. 2019 10.1109/ISNCC.2019.8909140 Open DOISearch in Google Scholar

G. Sidhu, N. Asgarian, R. Greiner, and M. R. G. Brown, “Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD,” Front. Syst. Neurosci., vol. 0, no. OCTOBER 2012, pp. 1–17, Oct. 2012, doi: 10.3389/FNSYS.2012.00074/BIBTEX. SidhuG. AsgarianN. GreinerR. BrownM. R. G. “Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD,” Front. Syst. Neurosci. 0 no. OCTOBER 2012, 1 17 Oct. 2012 10.3389/FNSYS.2012.00074/BIBTEX Open DOISearch in Google Scholar

L. J. Cao, K. S. Chua, W. K. Chong, H. P. Lee, and Q. M. Gu, “A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine,” Neurocomputing, vol. 55, no. 1–2, pp. 321–336, Sep. 2003, doi: 10.1016/S0925-2312(03)00433-8. CaoL. J. ChuaK. S. ChongW. K. LeeH. P. GuQ. M. “A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine,” Neurocomputing 55 1–2 321 336 Sep. 2003 10.1016/S0925-2312(03)00433-8 Open DOISearch in Google Scholar

C. C. Aggarwal, “Data Mining,” 2015, doi: 10.1007/978-3-319-14142-8. AggarwalC. C. “Data Mining,” 2015 10.1007/978-3-319-14142-8 Open DOISearch in Google Scholar

M. Goldstein and A. Dengel, “Histogram-based Outlier Score (HBOS): A fast Unsupervised Anomaly Detection Algorithm,” Accessed: Oct. 05, 2022. [Online]. Available: http://madm.dfki.de/rapidminer/anomalydetection. GoldsteinM. DengelA. “Histogram-based Outlier Score (HBOS): A fast Unsupervised Anomaly Detection Algorithm,” Accessed: Oct. 05, 2022. [Online]. Available: http://madm.dfki.de/rapidminer/anomalydetection. Search in Google Scholar

T. Zoppi, A. Ceccarelli, L. Salani, and A. Bondavalli, “On the educated selection of unsupervised algorithms via attacks and anomaly classes,” J. Inf. Secur. Appl., vol. 52, Jun. 2020, doi: 10.1016/J.JISA.2020.102474. ZoppiT. CeccarelliA. SalaniL. BondavalliA. “On the educated selection of unsupervised algorithms via attacks and anomaly classes,” J. Inf. Secur. Appl. 52 Jun. 2020 10.1016/J.JISA.2020.102474 Open DOISearch in Google Scholar

M. Zhang, B. Xu, and J. Gong, “An Anomaly Detection Model Based on One-Class SVM to Detect Network Intrusions,” Proc. - 11th Int. Conf. Mob. Ad-Hoc Sens. Networks, MSN 2015, pp. 102–107, Feb. 2016, doi: 10.1109/MSN.2015.40. ZhangM. XuB. GongJ. “An Anomaly Detection Model Based on One-Class SVM to Detect Network Intrusions,” Proc. - 11th Int. Conf. Mob. Ad-Hoc Sens. Networks, MSN 2015 102 107 Feb. 2016 10.1109/MSN.2015.40 Open DOISearch in Google Scholar

Z. Ding and M. Fei, “An Anomaly Detection Approach Based on Isolation Forest Algorithm for Streaming Data using Sliding Window,” IFAC Proc. Vol., vol. 46, no. 20, pp. 12–17, Jan. 2013, doi: 10.3182/20130902-3-CN-3020.00044. DingZ. FeiM. “An Anomaly Detection Approach Based on Isolation Forest Algorithm for Streaming Data using Sliding Window,” IFAC Proc. Vol. 46 20 12 17 Jan. 2013 10.3182/20130902-3-CN-3020.00044 Open DOISearch in Google Scholar

“Isolation Forest | Anomaly Detection with Isolation Forest.” https://www.analyticsvidhya.com/blog/2021/07/anomaly-detection-using-isolation-forest-a-complete-guide/ “Isolation Forest | Anomaly Detection with Isolation Forest.” https://www.analyticsvidhya.com/blog/2021/07/anomaly-detection-using-isolation-forest-a-complete-guide/ Search in Google Scholar

R. Sun, S. Zhang, C. Yin, J. Wang, and S. Min, “Strategies for data stream mining method applied in anomaly detection,” Cluster Comput., vol. 22, no. 2, pp. 399–408, Jun. 2019, doi: 10.1007/S10586-018-2835-2. SunR. ZhangS. YinC. WangJ. MinS. “Strategies for data stream mining method applied in anomaly detection,” Cluster Comput. 22 2 399 408 Jun. 2019 10.1007/S10586-018-2835-2 Open DOISearch in Google Scholar

K. Leung and C. Leckie, “Unsuper vised Anomaly Detection in Network Intrusion Detection Using Clusters,” doi: 10.5555/1082161. LeungK. LeckieC. “Unsuper vised Anomaly Detection in Network Intrusion Detection Using Clusters,” 10.5555/1082161 Open DOISearch in Google Scholar

W. Chimphlee, A. H. Abdullah, M. N. M. Sap, S. Srinoy, and S. Chimphlee, “Anomaly-based intrusion detection using fuzzy rough clustering,” Proc. - 2006 Int. Conf. Hybrid Inf. Technol. ICHIT 2006, vol. 1, pp. 329–334, 2006, doi: 10.1109/ICHIT.2006.253508. ChimphleeW. AbdullahA. H. SapM. N. M. SrinoyS. ChimphleeS. “Anomaly-based intrusion detection using fuzzy rough clustering,” Proc. - 2006 Int. Conf. Hybrid Inf. Technol. ICHIT 2006 1 329 334 2006 10.1109/ICHIT.2006.253508 Open DOISearch in Google Scholar

S. Zhong, T. M. Khoshgoftaar, and N. Seliya, “CLUSTERING-BASED NETWORK INTRUSION DETECTION,” http://dx.doi.org/10.1142/S0218539307002568, vol. 14, no. 2, pp. 169–187, Nov. 2011, doi: 10.1142/S0218539307002568. ZhongS. KhoshgoftaarT. M. SeliyaN. “CLUSTERING-BASED NETWORK INTRUSION DETECTION,” http://dx.doi.org/10.1142/S0218539307002568 14 2 169 187 Nov. 2011 10.1142/S0218539307002568 Open DOISearch in Google Scholar

M. Jianliang, S. Haikun, and B. Ling, “The application on intrusion detection based on K-means cluster algorithm,” Proc. - 2009 Int. Forum Inf. Technol. Appl. IFITA 2009, vol. 1, pp. 150–152, 2009, doi: 10.1109/IFITA.2009.34. JianliangM. HaikunS. LingB. “The application on intrusion detection based on K-means cluster algorithm,” Proc. - 2009 Int. Forum Inf. Technol. Appl. IFITA 2009 1 150 152 2009 10.1109/IFITA.2009.34 Open DOISearch in Google Scholar

A. P. Muniyandi, R. Rajeswari, and R. Rajaram, “Network Anomaly Detection by Cascading K-Means Clustering and C4.5 Decision Tree algorithm,” Procedia Eng., vol. 30, pp. 174–182, Jan. 2012, doi: 10.1016/J.PROENG.2012.01.849. MuniyandiA. P. RajeswariR. RajaramR. “Network Anomaly Detection by Cascading K-Means Clustering and C4.5 Decision Tree algorithm,” Procedia Eng. 30 174 182 Jan. 2012 10.1016/J.PROENG.2012.01.849 Open DOISearch in Google Scholar

S. Gujral, E. Ortiz, and V. L. Syrmos, “An unsupervised method for intrusion detection using spectral clustering,” 2009 IEEE Symp. Comput. Intell. Cyber Secur. CICS 2009 - Proc., 2009, doi: 10.1109/CICYBS.2009.4925096. GujralS. OrtizE. SyrmosV. L. “An unsupervised method for intrusion detection using spectral clustering,” 2009 IEEE Symp. Comput. Intell. Cyber Secur. CICS 2009 - Proc. 2009 10.1109/CICYBS.2009.4925096 Open DOISearch in Google Scholar

X. Ni, D. He, S. Chan, and F. Ahmad, “Network anomaly detection using unsupervised feature selection and density peak clustering,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9696, pp. 212–227, 2016, doi: 10.1007/978-3-319-39555-5_12. NiX. HeD. ChanS. AhmadF. “Network anomaly detection using unsupervised feature selection and density peak clustering,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 9696 212 227 2016 10.1007/978-3-319-39555-5_12 Open DOISearch in Google Scholar

M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “NADO: Network Anomaly Detection using Outlier approach,” ACM Int. Conf. Proceeding Ser., pp. 531–536, 2011, doi: 10.1145/1947940.1948050. BhuyanM. H. BhattacharyyaD. K. KalitaJ. K. “NADO: Network Anomaly Detection using Outlier approach,” ACM Int. Conf. Proceeding Ser. 531 536 2011 10.1145/1947940.1948050 Open DOISearch in Google Scholar

I. Syarif, A. Prugel-Bennett, and G. Wills, “Unsupervised Clustering Approach for Network Anomaly Detection,” pp. 135–145, 2012, doi: 10.1007/978-3-642-30507-8_13. SyarifI. Prugel-BennettA. WillsG. “Unsupervised Clustering Approach for Network Anomaly Detection,” 135 145 2012 10.1007/978-3-642-30507-8_13 Open DOISearch in Google Scholar

M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “An effective unsupervised network anomaly detection method,” ACM Int. Conf. Proceeding Ser., pp. 533–539, 2012, doi: 10.1145/2345396.2345484. BhuyanM. H. BhattacharyyaD. K. KalitaJ. K. “An effective unsupervised network anomaly detection method,” ACM Int. Conf. Proceeding Ser. 533 539 2012 10.1145/2345396.2345484 Open DOISearch in Google Scholar

M. Prasad, S. Tripathi, and K. Dahal, “Unsupervised feature selection and cluster center initialization based arbitrary shaped clusters for intrusion detection,” Comput. Secur., vol. 99, Dec. 2020, doi: 10.1016/J.COSE.2020.102062. PrasadM. TripathiS. DahalK. “Unsupervised feature selection and cluster center initialization based arbitrary shaped clusters for intrusion detection,” Comput. Secur. 99 Dec. 2020 10.1016/J.COSE.2020.102062 Open DOISearch in Google Scholar

J. Dromard, G. Roudière, and P. Owezarski, “Unsupervised network anomaly detection in real-time on big data,” Commun. Comput. Inf. Sci., vol. 539, pp. 197–206, 2015, doi: 10.1007/978-3-319-23201-0_22. DromardJ. RoudièreG. OwezarskiP. “Unsupervised network anomaly detection in real-time on big data,” Commun. Comput. Inf. Sci. 539 197 206 2015 10.1007/978-3-319-23201-0_22 Open DOISearch in Google Scholar

S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time anomaly detection for streaming data,” Neurocomputing, vol. 262, pp. 134–147, Nov. 2017, doi: 10.1016/J.NEUCOM.2017.04.070. AhmadS. LavinA. PurdyS. AghaZ. “Unsupervised real-time anomaly detection for streaming data,” Neurocomputing 262 134 147 Nov. 2017 10.1016/J.NEUCOM.2017.04.070 Open DOISearch in Google Scholar

B. C. Rhodes, J. A. Mahaffey, and J. D. Cannady, “Multiple Self-Organizing Maps for Intrusion Detection.” RhodesB. C. MahaffeyJ. A. CannadyJ. D. “Multiple Self-Organizing Maps for Intrusion Detection.” Search in Google Scholar

H. Güneş Kayacik, A. Nur Zincir-Heywood, and M. I. Heywood, “On the Capability of an SOM based Intrusion Detection System,” Proc. Int. Jt. Conf. Neural Networks, vol. 3, pp. 1808–1813, 2003, doi: 10.1109/IJCNN.2003.1223682. Güneş KayacikH. Nur Zincir-HeywoodA. HeywoodM. I. “On the Capability of an SOM based Intrusion Detection System,” Proc. Int. Jt. Conf. Neural Networks 3 1808 1813 2003 10.1109/IJCNN.2003.1223682 Open DOISearch in Google Scholar

A. D. Landress, “A hybrid approach to reducing the false positive rate in unsupervised machine learning intrusion detection,” Conf. Proc. - IEEE SOUTHEASTCON, vol. 2016-July, Jul. 2016, doi: 10.1109/SECON.2016.7506773. LandressA. D. “A hybrid approach to reducing the false positive rate in unsupervised machine learning intrusion detection,” Conf. Proc. - IEEE SOUTHEASTCON vol. 2016-July, Jul. 2016 10.1109/SECON.2016.7506773 Open DOISearch in Google Scholar

S. Y. Huang and Y. N. Huang, “Network traffic anomaly detection based on growing hierarchical SOM,” Proc. Int. Conf. Dependable Syst. Networks, 2013, doi: 10.1109/DSN.2013.6575338. HuangS. Y. HuangY. N. “Network traffic anomaly detection based on growing hierarchical SOM,” Proc. Int. Conf. Dependable Syst. Networks 2013 10.1109/DSN.2013.6575338 Open DOISearch in Google Scholar

N. Marir, H. Wang, G. Feng, B. Li, and M. Jia, “Distributed abnormal behavior detection approach based on deep belief network and ensemble SVM using spark,” IEEE Access, vol. 6, pp. 59657–59671, 2018, doi: 10.1109/ACCESS.2018.2875045. MarirN. WangH. FengG. LiB. JiaM. “Distributed abnormal behavior detection approach based on deep belief network and ensemble SVM using spark,” IEEE Access 6 59657 59671 2018 10.1109/ACCESS.2018.2875045 Open DOISearch in Google Scholar

K. Keerthi Vasan and B. Surendiran, “Dimensionality reduction using Principal Component Analysis for network intrusion detection,” Perspect. Sci., vol. 8, pp. 510–512, Sep. 2016, doi: 10.1016/J.PISC.2016.05.010. Keerthi VasanK. SurendiranB. “Dimensionality reduction using Principal Component Analysis for network intrusion detection,” Perspect. Sci. 8 510 512 Sep. 2016 10.1016/J.PISC.2016.05.010 Open DOISearch in Google Scholar

D. Yang and H. Qi, “A network intrusion detection method using independent component analysis,” Proc. - Int. Conf. Pattern Recognit., 2008, doi: 10.1109/ICPR.2008.4761087. YangD. QiH. “A network intrusion detection method using independent component analysis,” Proc. - Int. Conf. Pattern Recognit. 2008 10.1109/ICPR.2008.4761087 Open DOISearch in Google Scholar

T. M. Pattewar and H. A. Sonawane, “Neural network based intrusion detection using Bayesian with PCA and KPCA feature extraction,” 2015 IEEE Int. Conf. Comput. Graph. Vis. Inf. Secur. CGVIS 2015, pp. 83–88, Apr. 2016, doi: 10.1109/CGVIS.2015.7449898. PattewarT. M. SonawaneH. A. “Neural network based intrusion detection using Bayesian with PCA and KPCA feature extraction,” 2015 IEEE Int. Conf. Comput. Graph. Vis. Inf. Secur. CGVIS 2015 83 88 Apr. 2016 10.1109/CGVIS.2015.7449898 Open DOISearch in Google Scholar

F. Kuang, W. Xu, and S. Zhang, “A novel hybrid KPCA and SVM with GA model for intrusion detection,” Appl. Soft Comput. J., vol. 18, pp. 178–184, May 2014, doi: 10.1016/j.asoc.2014.01.028. KuangF. XuW. ZhangS. “A novel hybrid KPCA and SVM with GA model for intrusion detection,” Appl. Soft Comput. J. 18 178 184 May 2014 10.1016/j.asoc.2014.01.028 Open DOISearch in Google Scholar

Z. Elkhadir, K. Chougdali, and M. Benattou, “Intrusion detection system using PCA and kernel PCA methods,” Lect. Notes Electr. Eng., vol. 381, pp. 489–497, 2016, doi: 10.1007/978-3-319-30298-0_50. ElkhadirZ. ChougdaliK. BenattouM. “Intrusion detection system using PCA and kernel PCA methods,” Lect. Notes Electr. Eng. 381 489 497 2016 10.1007/978-3-319-30298-0_50 Open DOISearch in Google Scholar

M. Amer, M. Goldstein, and S. Abdennadher, “Enhancing one-class Support Vector Machines for unsupervised anomaly detection,” Proc. ACM SIGKDD Work. Outlier Detect. Descr. ODD 2013, pp. 8–15, 2013, doi: 10.1145/2500853.2500857. AmerM. GoldsteinM. AbdennadherS. “Enhancing one-class Support Vector Machines for unsupervised anomaly detection,” Proc. ACM SIGKDD Work. Outlier Detect. Descr. ODD 2013 8 15 2013 10.1145/2500853.2500857 Open DOISearch in Google Scholar

Q. T. Nguyen, T. Thu Huong, K. P. Tran, M. K. Nguyen, P. Castagliola, and S. Lardjane, “Nested one-class support vector machines for network intrusion detection,” 2018 IEEE 7th Int. Conf. Commun. Electron. ICCE 2018, pp. 7–12, Sep. 2018, doi: 10.1109/CCE.2018.8465718. NguyenQ. T. Thu HuongT. TranK. P. NguyenM. K. CastagliolaP. LardjaneS. “Nested one-class support vector machines for network intrusion detection,” 2018 IEEE 7th Int. Conf. Commun. Electron. ICCE 2018 7 12 Sep. 2018 10.1109/CCE.2018.8465718 Open DOISearch in Google Scholar

M. Verkerken, L. D'hooge, T. Wauters, B. Volckaert, and F. De Turck, “Towards Model Generalization for Intrusion Detection: Unsupervised Machine Learning Techniques,” J. Netw. Syst. Manag., vol. 30, no. 1, pp. 1–25, Jan. 2022, doi: 10.1007/S10922-021-09615-7/FIGURES/6. VerkerkenM. D'hoogeL. WautersT. VolckaertB. De TurckF. “Towards Model Generalization for Intrusion Detection: Unsupervised Machine Learning Techniques,” J. Netw. Syst. Manag. 30 1 1 25 Jan. 2022 10.1007/S10922-021-09615-7/FIGURES/6 Open DOISearch in Google Scholar

N. Paulauskas and A. Baskys, “Application of Histogram-Based Outlier Scores to Detect Computer Network Anomalies,” Electron. 2019, Vol. 8, Page 1251, vol. 8, no. 11, p. 1251, Nov. 2019, doi: 10.3390/ELECTRONICS8111251. PaulauskasN. BaskysA. “Application of Histogram-Based Outlier Scores to Detect Computer Network Anomalies,” Electron. 2019, Vol. 8, Page 1251 8 11 1251 Nov. 2019 10.3390/ELECTRONICS8111251 Open DOISearch in Google Scholar

B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating the support of a high-dimensional distribution,” Neural Comput., vol. 13, no. 7, pp. 1443–1471, Jul. 2001, doi: 10.1162/089976601750264965. SchölkopfB. PlattJ. C. Shawe-TaylorJ. SmolaA. J. WilliamsonR. C. “Estimating the support of a high-dimensional distribution,” Neural Comput. 13 7 1443 1471 Jul. 2001 10.1162/089976601750264965 Open DOISearch in Google Scholar

R. Aliakbarisani, A. Ghasemi, and S. Felix Wu, “A data-driven metric learning-based scheme for unsupervised network anomaly detection,” Comput. Electr. Eng., vol. 73, pp. 71–83, Jan. 2019, doi: 10.1016/J.COMPELECENG.2018.11.003. AliakbarisaniR. GhasemiA. Felix WuS. “A data-driven metric learning-based scheme for unsupervised network anomaly detection,” Comput. Electr. Eng. 73 71 83 Jan. 2019 10.1016/J.COMPELECENG.2018.11.003 Open DOISearch in Google Scholar

J. Auskalnis, N. Paulauskas, and A. Baskys, “Application of Local Outlier Factor Algorithm to Detect Anomalies in Computer Network,” Elektron. ir Elektrotechnika, vol. 24, no. 3, pp. 96–99, Jun. 2018, doi: 10.5755/J01.EIE.24.3.20972. AuskalnisJ. PaulauskasN. BaskysA. “Application of Local Outlier Factor Algorithm to Detect Anomalies in Computer Network,” Elektron. ir Elektrotechnika 24 3 96 99 Jun. 2018 10.5755/J01.EIE.24.3.20972 Open DOISearch in Google Scholar

T. Ding, M. Zhang, and D. He, “A Network Intrusion Detection Algorithm Based on Outlier Mining,” doi: 10.1007/978-981-10-6571-2_147. DingT. ZhangM. HeD. “A Network Intrusion Detection Algorithm Based on Outlier Mining,” 10.1007/978-981-10-6571-2_147 Open DOISearch in Google Scholar

M. Manulis, A.-R. Sadeghi, and S. Schneider, Eds., “Applied Cryptography and Network Security,” vol. 9696, 2016, doi: 10.1007/978-3-319-39555-5. ManulisM. SadeghiA.-R. SchneiderS. Eds. “Applied Cryptography and Network Security,” 9696 2016 10.1007/978-3-319-39555-5 Open DOISearch in Google Scholar

M. A. Kabir and X. Luo, “Unsuper vised Learning for Network Flow Based Anomaly Detection in the Era of Deep Learning,” Proc. - 2020 IEEE 6th Int. Conf. Big Data Comput. Serv. Appl. BigDataService 2020, pp. 165–168, Aug. 2020, doi: 10.1109/BIGDATASERVICE49289.2020.00032. KabirM. A. LuoX. “Unsuper vised Learning for Network Flow Based Anomaly Detection in the Era of Deep Learning,” Proc. - 2020 IEEE 6th Int. Conf. Big Data Comput. Serv. Appl. BigDataService 2020 165 168 Aug. 2020 10.1109/BIGDATASERVICE49289.2020.00032 Open DOISearch in Google Scholar

T. Truong-Huu et al., “An Empirical Study on Unsupervised Network Anomaly Detection using Generative Adversarial Networks,” SPAI 2020 - Proc. 1st ACM Work. Secur. Priv. Artif. Intelligent, Colocated with AsiaCCS 2020, pp. 20–29, Oct. 2020, doi: 10.1145/3385003.3410924. Truong-HuuT. “An Empirical Study on Unsupervised Network Anomaly Detection using Generative Adversarial Networks,” SPAI 2020 - Proc. 1st ACM Work. Secur. Priv. Artif. Intelligent, Colocated with AsiaCCS 2020 20 29 Oct. 2020 10.1145/3385003.3410924 Open DOISearch in Google Scholar

D. Sovilj, P. Budnarain, S. Sanner, G. Salmon, and M. Rao, “A comparative evaluation of unsupervised deep architectures for intrusion detection in sequential data streams,” Expert Syst. Appl., vol. 159, Nov. 2020, doi: 10.1016/J.ESWA.2020.113577. SoviljD. BudnarainP. SannerS. SalmonG. RaoM. “A comparative evaluation of unsupervised deep architectures for intrusion detection in sequential data streams,” Expert Syst. Appl. 159 Nov. 2020 10.1016/J.ESWA.2020.113577 Open DOISearch in Google Scholar

F. Carrera, V. Dentamaro, S. Galantucci, A. Iannacone, D. Impedovo, and G. Pirlo, “Combining Unsupervised Approaches for Near Real-Time Network Traffic Anomaly Detection,” Appl. Sci. 2022, Vol. 12, Page 1759, vol. 12, no. 3, p. 1759, Feb. 2022, doi: 10.3390/APP12031759. CarreraF. DentamaroV. GalantucciS. IannaconeA. ImpedovoD. PirloG. “Combining Unsupervised Approaches for Near Real-Time Network Traffic Anomaly Detection,” Appl. Sci. 2022, Vol. 12, Page 1759 12 3 1759 Feb. 2022 10.3390/APP12031759 Open DOISearch in Google Scholar

X. Sáez-de-Cámara, J. L. Flores, C. Arellano, A. Urbieta, and U. Zurutuza, “Clustered federated learning architecture for network anomaly detection in large scale heterogeneous IoT networks,” Comput. Secur., vol. 131, p. 103299, Aug. 2023, doi: 10.1016/J.COSE.2023.103299. Sáez-de-CámaraX. FloresJ. L. ArellanoC. UrbietaA. ZurutuzaU. “Clustered federated learning architecture for network anomaly detection in large scale heterogeneous IoT networks,” Comput. Secur. 131 103299 Aug. 2023 10.1016/J.COSE.2023.103299 Open DOISearch in Google Scholar

P. Casas Hernandez, J. Mazel, P. Owezarski, P. O. Unsupervised, and P. Casas, “Network Intrusion Detection Systems: Detecting the Unknown without Knowledge,” Comput. Commun., vol. 35, no. 7, pp. 772–783, 2012, Accessed: May 23, 2022. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00736278. Casas HernandezP. MazelJ. OwezarskiP. UnsupervisedP. O. CasasP. “Network Intrusion Detection Systems: Detecting the Unknown without Knowledge,” Comput. Commun. 35 7 772 783 2012 Accessed: May 23, 2022. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00736278. Search in Google Scholar

M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “An Effective Unsupervised Network Anomaly Detection Method,” 2012. BhuyanM. H. BhattacharyyaD. K. KalitaJ. K. “An Effective Unsupervised Network Anomaly Detection Method,” 2012 Search in Google Scholar

P. Casas, J. Mazel, and P. Owezarski, “Knowledge-independent traffic monitoring: Unsupervised detection of network attacks,” IEEE Netw., vol. 26, no. 1, pp. 13–21, Jan. 2012, doi: 10.1109/MNET.2012.6135851. CasasP. MazelJ. OwezarskiP. “Knowledge-independent traffic monitoring: Unsupervised detection of network attacks,” IEEE Netw. 26 1 13 21 Jan. 2012 10.1109/MNET.2012.6135851 Open DOISearch in Google Scholar

I. Aljarah and S. A. Ludwig, “MapReduce intrusion detection system based on a particle swarm optimization clustering algorithm,” 2013 IEEE Congr. Evol. Comput. CEC 2013, pp. 955–962, 2013, doi: 10.1109/CEC.2013.6557670. AljarahI. LudwigS. A. “MapReduce intrusion detection system based on a particle swarm optimization clustering algorithm,” 2013 IEEE Congr. Evol. Comput. CEC 2013 955 962 2013 10.1109/CEC.2013.6557670 Open DOISearch in Google Scholar

J. Song, H. Takakura, Y. Okabe, and K. Nakao, “Toward a more practical unsupervised anomaly detection system,” Inf. Sci. (Ny)., vol. 231, pp. 4–14, May 2013, doi: 10.1016/J.INS.2011.08.011. SongJ. TakakuraH. OkabeY. NakaoK. “Toward a more practical unsupervised anomaly detection system,” Inf. Sci. (Ny). 231 4 14 May 2013 10.1016/J.INS.2011.08.011 Open DOISearch in Google Scholar

A. M. Chandrasekhar and K. Raghuveer, “Intrusion detection technique by using k-means, fuzzy neural network and SVM classifiers,” 2013 Int. Conf. Comput. Commun. Informatics, ICCCI 2013, 2013, doi: 10.1109/ICCCI.2013.6466310. ChandrasekharA. M. RaghuveerK. “Intrusion detection technique by using k-means, fuzzy neural network and SVM classifiers,” 2013 Int. Conf. Comput. Commun. Informatics, ICCCI 2013 2013 10.1109/ICCCI.2013.6466310 Open DOISearch in Google Scholar

“(PDF) Artificial Immune System Based Intrusion Detection: Innate Immunity using an Unsupervised Learning Approach.” https://www.researchgate.net/publication/270276153_Artificial_Immune_System_Based_Intrusion_Detection_Innate_Immunity_using_an_Unsupervised_Learning_Approach. “(PDF) Artificial Immune System Based Intrusion Detection: Innate Immunity using an Unsupervised Learning Approach.” https://www.researchgate.net/publication/270276153_Artificial_Immune_System_Based_Intrusion_Detection_Innate_Immunity_using_an_Unsupervised_Learning_Approach. Search in Google Scholar

K. A. P. Costa, L. A. M. Pereira, R. Y. M. Nakamura, C. R. Pereira, J. P. Papa, and A. Xavier Falcão, “A nature-inspired approach to speed up optimum-path forest clustering and its application to intrusion detection in computer networks,” Inf. Sci. (Ny)., vol. 294, pp. 95–108, Feb. 2015, doi: 10.1016/J.INS.2014.09.025. CostaK. A. P. PereiraL. A. M. NakamuraR. Y. M. PereiraC. R. PapaJ. P. Xavier FalcãoA. “A nature-inspired approach to speed up optimum-path forest clustering and its application to intrusion detection in computer networks,” Inf. Sci. (Ny). 294 95 108 Feb. 2015 10.1016/J.INS.2014.09.025 Open DOISearch in Google Scholar

P. V. Amoli, T. Hamalainen, G. David, M. Zolotukhin, and M. Mirzamohammad, “Unsupervised Network Intrusion Detection Systems for Zero-Day Fast-Spreading Attacks and Botnets Distributed Intrusion Detection Systems Based on Artificial Immune System View project Unsupervised Network Intrusion Detection Systems for Zero-Day Fast-Spreading Attacks and Botnets,” Artic. Int. J. Digit. Content Technol. its Appl., 2016, Accessed: Jun. 16, 2022. [Online]. Available: https://www.researchgate.net/publication/301549262. AmoliP. V. HamalainenT. DavidG. ZolotukhinM. MirzamohammadM. “Unsupervised Network Intrusion Detection Systems for Zero-Day Fast-Spreading Attacks and Botnets Distributed Intrusion Detection Systems Based on Artificial Immune System View project Unsupervised Network Intrusion Detection Systems for Zero-Day Fast-Spreading Attacks and Botnets,” Artic. Int. J. Digit. Content Technol. its Appl. 2016 Accessed: Jun. 16, 2022. [Online]. Available: https://www.researchgate.net/publication/301549262. Search in Google Scholar

H. Bostani and M. Sheikhan, “Modification of supervised OPF-based intrusion detection systems using unsupervised learning and social network concept,” Pattern Recognit., vol. 62, pp. 56–72, Feb. 2017, doi: 10.1016/J.PATCOG.2016.08.027. BostaniH. SheikhanM. “Modification of supervised OPF-based intrusion detection systems using unsupervised learning and social network concept,” Pattern Recognit. 62 56 72 Feb. 2017 10.1016/J.PATCOG.2016.08.027 Open DOISearch in Google Scholar

M. Almi'Ani, A. A. Ghazleh, A. Al-Rahayfeh, and A. Razaque, “Intelligent intrusion detection system using clustered self organized map,” 2018 5th Int. Conf. Softw. Defin. Syst. SDS 2018, pp. 138–144, May 2018, doi: 10.1109/SDS.2018.8370435. Almi'AniM. GhazlehA. A. Al-RahayfehA. RazaqueA. “Intelligent intrusion detection system using clustered self organized map,” 2018 5th Int. Conf. Softw. Defin. Syst. SDS 2018 138 144 May 2018 10.1109/SDS.2018.8370435 Open DOISearch in Google Scholar

D. He, S. Chan, X. Ni, and M. Guizani, “Software-Defined-Networking-Enabled Traffic Anomaly Detection and Mitigation,” IEEE Internet Things J., vol. 4, no. 6, pp. 1890–1898, Dec. 2017, doi: 10.1109/JIOT.2017.2694702. HeD. ChanS. NiX. GuizaniM. “Software-Defined-Networking-Enabled Traffic Anomaly Detection and Mitigation,” IEEE Internet Things J. 4 6 1890 1898 Dec. 2017 10.1109/JIOT.2017.2694702 Open DOISearch in Google Scholar

E. Ariafar and R. Kiani, “Intrusion detection system using an optimized framework based on datamining techniques,” 2017 IEEE 4th Int. Conf. Knowledge-Based Eng. Innov. KBEI 2017, vol. 2018-January, pp. 0785–0791, Mar. 2018, doi: 10.1109/KBEI.2017.8324903. AriafarE. KianiR. “Intrusion detection system using an optimized framework based on datamining techniques,” 2017 IEEE 4th Int. Conf. Knowledge-Based Eng. Innov. KBEI 2017 vol. 2018-January, 0785 0791 Mar. 2018 10.1109/KBEI.2017.8324903 Open DOISearch in Google Scholar

E. Bigdeli, M. Mohammadi, B. Raahemi, and S. Matwin, “Incremental anomaly detection using two-layer cluster-based structure,” Inf. Sci. (Ny)., vol. 429, pp. 315–331, Mar. 2018, doi: 10.1016/J.INS.2017.11.023. BigdeliE. MohammadiM. RaahemiB. MatwinS. “Incremental anomaly detection using two-layer cluster-based structure,” Inf. Sci. (Ny). 429 315 331 Mar. 2018 10.1016/J.INS.2017.11.023 Open DOISearch in Google Scholar

M. Almi'Ani, A. A. Ghazleh, A. Al-Rahayfeh, and A. Razaque, “Intelligent intrusion detection system using clustered self organized map,” in 2018 5th International Conference on Software Defined Systems, SDS 2018, May 2018, pp. 138–144, doi: 10.1109/SDS.2018.8370435. Almi'AniM. GhazlehA. A. Al-RahayfehA. RazaqueA. “Intelligent intrusion detection system using clustered self organized map,” in 2018 5th International Conference on Software Defined Systems, SDS 2018 May 2018 138 144 10.1109/SDS.2018.8370435 Open DOISearch in Google Scholar

Y. Zhou, L. Yu, M. Liu, Y. Zhang, and H. Li, “Network intrusion detection based on kernel principal component analysis and extreme learning machine,” Int. Conf. Commun. Technol. Proceedings, ICCT, vol. 2019-October, pp. 860–864, Jan. 2019, doi: 10.1109/ICCT.2018.8600104. ZhouY. YuL. LiuM. ZhangY. LiH. “Network intrusion detection based on kernel principal component analysis and extreme learning machine,” Int. Conf. Commun. Technol. Proceedings, ICCT vol. 2019-October, 860 864 Jan. 2019 10.1109/ICCT.2018.8600104 Open DOISearch in Google Scholar

H. Choi, M. Kim, G. Lee, and W. Kim, “Unsupervised learning approach for network intrusion detection system using autoencoders,” J. Supercomput., vol. 75, no. 9, pp. 5597–5621, Sep. 2019, doi: 10.1007/S11227-019-02805-W/TABLES/10. ChoiH. KimM. LeeG. KimW. “Unsupervised learning approach for network intrusion detection system using autoencoders,” J. Supercomput. 75 9 5597 5621 Sep. 2019 10.1007/S11227-019-02805-W/TABLES/10 Open DOISearch in Google Scholar

R. H. Hwang, M. C. Peng, C. W. Huang, P. C. Lin, and V. L. Nguyen, “An Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection,” IEEE Access, vol. 8, pp. 30387–30399, 2020, doi: 10.1109/ACCESS.2020.2973023. HwangR. H. PengM. C. HuangC. W. LinP. C. NguyenV. L. “An Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection,” IEEE Access 8 30387 30399 2020 10.1109/ACCESS.2020.2973023 Open DOISearch in Google Scholar

S. Zavrak and M. Iskefiyeli, “Anomaly-Based Intrusion Detection from Network Flow Features Using Variational Autoencoder,” IEEE Access, vol. 8, pp. 108346–108358, 2020, doi: 10.1109/ACCESS.2020.3001350. ZavrakS. IskefiyeliM. “Anomaly-Based Intrusion Detection from Network Flow Features Using Variational Autoencoder,” IEEE Access 8 108346 108358 2020 10.1109/ACCESS.2020.3001350 Open DOISearch in Google Scholar

A. A. Megantara and T. Ahmad, “A hybrid machine learning method for increasing the performance of network intrusion detection systems,” J. Big Data, vol. 8, no. 1, pp. 1–19, Dec. 2021, doi: 10.1186/S40537-021-00531-W/TABLES/8. MegantaraA. A. AhmadT. “A hybrid machine learning method for increasing the performance of network intrusion detection systems,” J. Big Data 8 1 1 19 Dec. 2021 10.1186/S40537-021-00531-W/TABLES/8 Open DOISearch in Google Scholar

J. Liao, S. G. Teo, P. Pratim Kundu, and T. Truong-Huu, “ENAD: An ensemble framework for unsupervised network anomaly detection,” Proc. 2021 IEEE Int. Conf. Cyber Secur. Resilience, CSR 2021, pp. 81–88, Jul. 2021, doi: 10.1109/CSR51186.2021.9527982. LiaoJ. TeoS. G. Pratim KunduP. Truong-HuuT. “ENAD: An ensemble framework for unsupervised network anomaly detection,” Proc. 2021 IEEE Int. Conf. Cyber Secur. Resilience, CSR 2021 81 88 Jul. 2021 10.1109/CSR51186.2021.9527982 Open DOISearch in Google Scholar

A. Singh and J. Jang-Jaccard, “Autoencoder-based Unsupervised Intrusion Detection using Multi-Scale Convolutional Recurrent Networks,” Apr. 2022, Accessed: Jun. 05, 2023. [Online]. Available: https://arxiv.org/abs/2204.03779v1. SinghA. Jang-JaccardJ. “Autoencoder-based Unsupervised Intrusion Detection using Multi-Scale Convolutional Recurrent Networks,” Apr. 2022 Accessed: Jun. 05, 2023. [Online]. Available: https://arxiv.org/abs/2204.03779v1. Search in Google Scholar

Y. Wang, G. Sun, X. Cao, and J. Yang, “An Intrusion Detection System for the Internet of Things Based on the Ensemble of Unsupervised Techniques,” Wirel. Commun. Mob. Comput., vol. 2022, 2022, doi: 10.1155/2022/8614903. WangY. SunG. CaoX. YangJ. “An Intrusion Detection System for the Internet of Things Based on the Ensemble of Unsupervised Techniques,” Wirel. Commun. Mob. Comput. 2022 2022 10.1155/2022/8614903 Open DOISearch in Google Scholar

G. de C. Bertoli, L. A. P. Junior, A. L. dos Santos, and O. Saotome, “Generalizing intrusion detection for heterogeneous networks: A stacked-unsupervised federated learning approach,” Comput. Secur., vol. 127, Sep. 2022, doi: 10.1016/j.cose.2023.103106. BertoliG. de C. JuniorL. A. P. dos SantosA. L. SaotomeO. “Generalizing intrusion detection for heterogeneous networks: A stacked-unsupervised federated learning approach,” Comput. Secur. 127 Sep. 2022 10.1016/j.cose.2023.103106 Open DOISearch in Google Scholar

M. E. Eren et al., “General-purpose Unsupervised Cyber Anomaly Detection via Non-negative Tensor Factorization,” Digit. Threat. Res. Pract., vol. 4, no. 1, pp. 1–28, Mar. 2023, doi: 10.1145/3519602. ErenM. E. “General-purpose Unsupervised Cyber Anomaly Detection via Non-negative Tensor Factorization,” Digit. Threat. Res. Pract. 4 1 1 28 Mar. 2023 10.1145/3519602 Open DOISearch in Google Scholar

J. Lan, X. Liu, B. Li, and J. Zhao, “A novel hierarchical attention-based triplet network with unsupervised domain adaptation for network intrusion detection,” Appl. Intell., vol. 53, no. 10, pp. 11705–11726, May 2022, doi: 10.1007/S10489-022-04076-0/FIGURES/8. LanJ. LiuX. LiB. ZhaoJ. “A novel hierarchical attention-based triplet network with unsupervised domain adaptation for network intrusion detection,” Appl. Intell. 53 10 11705 11726 May 2022 10.1007/S10489-022-04076-0/FIGURES/8 Open DOISearch in Google Scholar

T. K. Boppana and P. Bagade, “GAN-AE: An unsupervised intrusion detection system for MQTT networks,” Eng. Appl. Artif. Intell., vol. 119, p. 105805, Mar. 2023, doi: 10.1016/J.ENGAPPAI.2022.105805. BoppanaT. K. BagadeP. “GAN-AE: An unsupervised intrusion detection system for MQTT networks,” Eng. Appl. Artif. Intell. 119 105805 Mar. 2023 10.1016/J.ENGAPPAI.2022.105805 Open DOISearch in Google Scholar

“MIT Lincoln Laboratory: DARPA Intrusion Detection Evaluation.” https://archive.ll.mit.edu/ideval/data/2000data.html (accessed May 25, 2022). “MIT Lincoln Laboratory: DARPA Intrusion Detection Evaluation.” https://archive.ll.mit.edu/ideval/data/2000data.html (accessed May 25, 2022). Search in Google Scholar

“KDD Cup 1999 Data.” http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed May 25, 2022). “KDD Cup 1999 Data.” http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed May 25, 2022). Search in Google Scholar

“DEF CON® Hacking Conference - Call for CTF Organizers.” https://defcon.org/html/links/dc-ctfcfo.html (accessed Feb. 10, 2024). “DEF CON® Hacking Conference - Call for CTF Organizers.” https://defcon.org/html/links/dc-ctfcfo.html (accessed Feb. 10, 2024). Search in Google Scholar

“LBNL/ICSI Enterprise Tracing Project - Traces Project Papers.” https://www.icir.org/enterprise-tracing/papers.html (accessed May 25, 2022). “LBNL/ICSI Enterprise Tracing Project - Traces Project Papers.” https://www.icir.org/enterprise-tracing/papers.html (accessed May 25, 2022). Search in Google Scholar

J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, and K. Nakao, “Statistical analysis of honeypot data and building of Kyoto 2006+ dataset for NIDS evaluation,” Proc. 1st Work. Build. Anal. Datasets Gather. Exp. Returns Secur. BADGERS 2011, pp. 29–36, 2011, doi: 10.1145/1978672.1978676. SongJ. TakakuraH. OkabeY. EtoM. InoueD. NakaoK. “Statistical analysis of honeypot data and building of Kyoto 2006+ dataset for NIDS evaluation,” Proc. 1st Work. Build. Anal. Datasets Gather. Exp. Returns Secur. BADGERS 2011 29 36 2011 10.1145/1978672.1978676 Open DOISearch in Google Scholar

“NSL-KDD | Datasets | Research | Canadian Institute for Cybersecurity | UNB.” https://www.unb.ca/cic/datasets/nsl.html (accessed May 25, 2022). “NSL-KDD | Datasets | Research | Canadian Institute for Cybersecurity | UNB.” https://www.unb.ca/cic/datasets/nsl.html (accessed May 25, 2022). Search in Google Scholar

“Cyber Research Center - Data Sets | United States Military Academy West Point.” https://www.usma.edu/centers-and-research/cyber-research-center/data-sets (accessed Feb. 10, 2024). “Cyber Research Center - Data Sets | United States Military Academy West Point.” https://www.usma.edu/centers-and-research/cyber-research-center/data-sets (accessed Feb. 10, 2024). Search in Google Scholar

A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward developing a systematic approach to generate benchmark datasets for intrusion detection,” Comput. Secur., vol. 31, no. 3, pp. 357–374, May 2012, doi: 10.1016/J.COSE.2011.12.012. ShiraviA. ShiraviH. TavallaeeM. GhorbaniA. A. “Toward developing a systematic approach to generate benchmark datasets for intrusion detection,” Comput. Secur. 31 3 357 374 May 2012 10.1016/J.COSE.2011.12.012 Open DOISearch in Google Scholar

M. Jonker, A. King, J. Krupp, C. Rossow, A. Sperotto, and A. Dainotti, “Millions of targets under atack: A macroscopic characterization of the DoS ecosystem,” Proc. ACM SIGCOMM Internet Meas. Conf. IMC, vol. Part F131937, pp. 100–113, Nov. 2017, doi: 10.1145/3131365.3131383. JonkerM. KingA. KruppJ. RossowC. SperottoA. DainottiA. “Millions of targets under atack: A macroscopic characterization of the DoS ecosystem,” Proc. ACM SIGCOMM Internet Meas. Conf. IMC vol. Part F131937, 100 113 Nov. 2017 10.1145/3131365.3131383 Open DOISearch in Google Scholar

N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set),” 2015 Mil. Commun. Inf. Syst. Conf. MilCIS 2015 - Proc., Dec. 2015, doi: 10.1109/MILCIS.2015.7348942. MoustafaN. SlayJ. “UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set),” 2015 Mil. Commun. Inf. Syst. Conf. MilCIS 2015 - Proc. Dec. 2015 10.1109/MILCIS.2015.7348942 Open DOISearch in Google Scholar

M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho, “Flow-based benchmark data sets for intrusion detection,” 2017. RingM. WunderlichS. GrüdlD. LandesD. HothoA. “Flow-based benchmark data sets for intrusion detection,” 2017 Search in Google Scholar

I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization,” ICISSP 2018 - Proc. 4th Int. Conf. Inf. Syst. Secur. Priv., vol. 2018-January, pp. 108–116, 2018, doi: 10.5220/0006639801080116. SharafaldinI. LashkariA. H. GhorbaniA. A. “Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization,” ICISSP 2018 - Proc. 4th Int. Conf. Inf. Syst. Secur. Priv. vol. 2018-January, 108 116 2018 10.5220/0006639801080116 Open DOISearch in Google Scholar

M. P. Bharati and S. Tamane, “NIDS-Network Intrusion Detection System Based on Deep and Machine Learning Frameworks with CICIDS2018 using Cloud Computing,” Proc. 2020 Int. Conf. Smart Innov. Des. Environ. Manag. Plan. Comput. ICSIDEMPC 2020, pp. 27–30, Oct. 2020, doi: 10.1109/ICSIDEMPC49020.2020.9299584. BharatiM. P. TamaneS. “NIDS-Network Intrusion Detection System Based on Deep and Machine Learning Frameworks with CICIDS2018 using Cloud Computing,” Proc. 2020 Int. Conf. Smart Innov. Des. Environ. Manag. Plan. Comput. ICSIDEMPC 2020 27 30 Oct. 2020 10.1109/ICSIDEMPC49020.2020.9299584 Open DOISearch in Google Scholar

I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy,” Proc. - Int. Carnahan Conf. Secur. Technol., vol. 2019-October, Oct. 2019, doi: 10.1109/CCST.2019.8888419. SharafaldinI. LashkariA. H. HakakS. GhorbaniA. A. “Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy,” Proc. - Int. Carnahan Conf. Secur. Technol. vol. 2019-October, Oct. 2019 10.1109/CCST.2019.8888419 Open DOISearch in Google Scholar

N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset,” Futur. Gener. Comput. Syst., vol. 100, pp. 779–796, Nov. 2019, doi: 10.1016/J.FUTURE.2019.05.041. KoroniotisN. MoustafaN. SitnikovaE. TurnbullB. “Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset,” Futur. Gener. Comput. Syst. 100 779 796 Nov. 2019 10.1016/J.FUTURE.2019.05.041 Open DOISearch in Google Scholar

“IoT-23 Dataset: A labeled dataset of Malware and Benign IoT Traffic. — Stratosphere IPS.” https://www.stratosphereips.org/datasets-iot23 (accessed Jul. 08, 2023). “IoT-23 Dataset: A labeled dataset of Malware and Benign IoT Traffic. — Stratosphere IPS.” https://www.stratosphereips.org/datasets-iot23 (accessed Jul. 08, 2023). Search in Google Scholar

M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD CUP 99 data set,” IEEE Symp. Comput. Intell. Secur. Def. Appl. CISDA 2009, Dec. 2009, doi: 10.1109/CISDA.2009.5356528. TavallaeeM. BagheriE. LuW. GhorbaniA. A. “A detailed analysis of the KDD CUP 99 data set,” IEEE Symp. Comput. Intell. Secur. Def. Appl. CISDA 2009 Dec. 2009 10.1109/CISDA.2009.5356528 Open DOISearch in Google Scholar

N. Moustafa, G. Creech, and J. Slay, “Big Data Analytics for Intrusion Detection System: Statistical Decision-Making Using Finite Dirichlet Mixture Models,” pp. 127–156, 2017, doi: 10.1007/978-3-319-59439-2_5. MoustafaN. CreechG. SlayJ. “Big Data Analytics for Intrusion Detection System: Statistical Decision-Making Using Finite Dirichlet Mixture Models,” 127 156 2017 10.1007/978-3-319-59439-2_5 Open DOISearch in Google Scholar

M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network anomaly detection techniques,” J. Netw. Comput. Appl., vol. 60, pp. 19–31, 2016, doi: 10.1016/j.jnca.2015.11.016. AhmedM. Naser MahmoodA. HuJ. “A survey of network anomaly detection techniques,” J. Netw. Comput. Appl. 60 19 31 2016 10.1016/j.jnca.2015.11.016 Open DOISearch in Google Scholar

M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network Anomaly Detection: Methods, Systems and Tools,” IEEE Commun. Surv. TUTORIALS, vol. 16, no. 1, 2014, doi: 10.1109/SURV.2013.052213.00046. BhuyanM. H. BhattacharyyaD. K. KalitaJ. K. “Network Anomaly Detection: Methods, Systems and Tools,” IEEE Commun. Surv. TUTORIALS 16 1 2014 10.1109/SURV.2013.052213.00046 Open DOISearch in Google Scholar

“GitHub - snayan06/Dimensionality-Reduction-Technique-PCA-LDA-ICA-SVD: In this we are going to learn about how to impliment PCA algorithm which is useful for Dimentionality Reduction.” https://github.com/snayan06/Dimensionality-Reduction-Technique-PCALDA-ICA-SVD (accessed Oct. 29, 2022). “GitHub - snayan06/Dimensionality-Reduction-Technique-PCA-LDA-ICA-SVD: In this we are going to learn about how to impliment PCA algorithm which is useful for Dimentionality Reduction.” https://github.com/snayan06/Dimensionality-Reduction-Technique-PCALDA-ICA-SVD (accessed Oct. 29, 2022). Search in Google Scholar

“GitHub - vamsikrishnachangala/Dimensionality_reduction_KPCA.” https://github.com/vamsikrishnachangala/Dimensionality_reduction_KPCA (accessed Oct. 29, 2022). “GitHub - vamsikrishnachangala/Dimensionality_reduction_KPCA.” https://github.com/vamsikrishnachangala/Dimensionality_reduction_KPCA (accessed Oct. 29, 2022). Search in Google Scholar

“GitHub - Habeebhassan/Anomaly_Detection_HBOS: Anomaly detection model using Histogram Based Outlier System to create labels for unsupervised dataset, by detecting outliers as a result of threshold set.” https://github.com/Habeebhassan/Anomaly_Detection_HBOS (accessed Oct. 29, 2022). “GitHub - Habeebhassan/Anomaly_Detection_HBOS: Anomaly detection model using Histogram Based Outlier System to create labels for unsupervised dataset, by detecting outliers as a result of threshold set.” https://github.com/Habeebhassan/Anomaly_Detection_HBOS (accessed Oct. 29, 2022). Search in Google Scholar

“GitHub - zhongyuchen/outlier-detection: Detect outliers with 3 methods: LOF, DBSCAN and one-class SVM.” https://github.com/zhongyuchen/outlier-detection (accessed Oct. 29, 2022). “GitHub - zhongyuchen/outlier-detection: Detect outliers with 3 methods: LOF, DBSCAN and one-class SVM.” https://github.com/zhongyuchen/outlier-detection (accessed Oct. 29, 2022). Search in Google Scholar

“GitHub - yzhao062/pyod: A Comprehensive and Scalable Python Library for Outlier Detection (Anomaly Detection).” https://github.com/yzhao062/pyod#hoffmann2007kernel (accessed Oct. 30, 2022). “GitHub - yzhao062/pyod: A Comprehensive and Scalable Python Library for Outlier Detection (Anomaly Detection).” https://github.com/yzhao062/pyod#hoffmann2007kernel (accessed Oct. 30, 2022). Search in Google Scholar

H. Bin Wang, H. L. Yang, Z. J. Xu, and Z. Yuan, “A clustering algorithm use SOM and K-Means in Intrusion Detection,” Proc. Int. Conf. E-bus. E-Government, ICEE 2010, pp. 1281–1284, 2010, doi: 10.1109/ICEE.2010.327. Bin WangH. YangH. L. XuZ. J. YuanZ. “A clustering algorithm use SOM and K-Means in Intrusion Detection,” Proc. Int. Conf. E-bus. E-Government, ICEE 2010 1281 1284 2010 10.1109/ICEE.2010.327 Open DOISearch in Google Scholar

E. J. Palomo, E. Domínguez, R. M. Luque, and J. Muñoz, “Network security using growing hierarchical self-organizing maps,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5495 LNCS, pp. 130–139, 2009, doi: 10.1007/978-3-642-04921-7_14. PalomoE. J. DomínguezE. LuqueR. M. MuñozJ. “Network security using growing hierarchical self-organizing maps,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 5495 LNCS, 130 139 2009 10.1007/978-3-642-04921-7_14 Open DOISearch in Google Scholar

D. Ippoliti and X. Zhou, “A-GHSOM: An adaptive growing hierarchical self organizing map for network anomaly detection,” J. Parallel Distrib. Comput., vol. 72, no. 12, pp. 1576–1590, Dec. 2012, doi: 10.1016/J.JPDC.2012.09.004. IppolitiD. ZhouX. “A-GHSOM: An adaptive growing hierarchical self organizing map for network anomaly detection,” J. Parallel Distrib. Comput. 72 12 1576 1590 Dec. 2012 10.1016/J.JPDC.2012.09.004 Open DOISearch in Google Scholar

H. Gunes Kayacik, A. Nur Zincir-Heywood, and M. I. Heywood, “A hierarchical SOM-based intrusion detection system,” Eng. Appl. Artif. Intell., vol. 20, no. 4, pp. 439–451, Jun. 2007, doi: 10.1016/J.ENGAPPAI.2006.09.005. Gunes KayacikH. Nur Zincir-HeywoodA. HeywoodM. I. “A hierarchical SOM-based intrusion detection system,” Eng. Appl. Artif. Intell. 20 4 439 451 Jun. 2007 10.1016/J.ENGAPPAI.2006.09.005 Open DOISearch in Google Scholar

M. Vasighi and H. Amini, “A directed batch growing approach to enhance the topology preservation of self-organizing map,” Appl. Soft Comput., vol. 55, pp. 424–435, Jun. 2017, doi: 10.1016/J.ASOC.2017.02.015. VasighiM. AminiH. “A directed batch growing approach to enhance the topology preservation of self-organizing map,” Appl. Soft Comput. 55 424 435 Jun. 2017 10.1016/J.ASOC.2017.02.015 Open DOISearch in Google Scholar

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2017-October, pp. 618–626, Dec. 2017, doi: 10.1109/ICCV.2017.74. SelvarajuR. R. CogswellM. DasA. VedantamR. ParikhD. BatraD. “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization,” Proc. IEEE Int. Conf. Comput. Vis. vol. 2017-October, 618 626 Dec. 2017 10.1109/ICCV.2017.74 Open DOISearch in Google Scholar

D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, “Network dissection: Quantifying interpretability of deep visual representations,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 3319–3327, Nov. 2017, doi: 10.1109/CVPR.2017.354. BauD. ZhouB. KhoslaA. OlivaA. TorralbaA. “Network dissection: Quantifying interpretability of deep visual representations,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017 vol. 2017-January, 3319 3327 Nov. 2017 10.1109/CVPR.2017.354 Open DOISearch in Google Scholar

I. Sturm, S. Lapuschkin, W. Samek, and K. R. Müller, “Interpretable Deep Neural Networks for Single-Trial EEG Classification,” J. Neurosci. Methods, vol. 274, pp. 141–145, Apr. 2016, doi: 10.48550/arxiv.1604.08201. SturmI. LapuschkinS. SamekW. MüllerK. R. “Interpretable Deep Neural Networks for Single-Trial EEG Classification,” J. Neurosci. Methods 274 141 145 Apr. 2016 10.48550/arxiv.1604.08201 Open DOISearch in Google Scholar

R. Sommer and V. Paxson, “Outside the closed world: On using machine learning for network intrusion detection,” Proc. - IEEE Symp. Secur. Priv., pp. 305–316, 2010, doi: 10.1109/SP.2010.25. SommerR. PaxsonV. “Outside the closed world: On using machine learning for network intrusion detection,” Proc. - IEEE Symp. Secur. Priv. 305 316 2010 10.1109/SP.2010.25 Open DOISearch in Google Scholar

eISSN:
1178-5608
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Engineering, Introductions and Overviews, other