Accès libre

Automated Parkinson's Disease Detection: A Review of Techniques, Datasets, Modalities, and Open Challenges

À propos de cet article

Citez

J. Dumurgier and C. Tzourio, “Epidemiology of neurological diseases in older adults,” Revue Neurologique, vol. 176, no. 9. Elsevier Masson s.r.l., pp. 642–648, Nov. 01, 2020. doi: 10.1016/j.neurol.2020.01.356. DumurgierJ. TzourioC. “Epidemiology of neurological diseases in older adults,” Revue Neurologique 176 9 Elsevier Masson s.r.l. 642 648 Nov. 01 2020 10.1016/j.neurol.2020.01.356 Open DOISearch in Google Scholar

M. Fayyad et al., “Parkinson's disease biomarkers based on α-synuclein,” Journal of Neurochemistry, vol. 150, no. 5. Blackwell Publishing Ltd, pp. 626–636, 2019. doi: 10.1111/jnc.14809. FayyadM. “Parkinson's disease biomarkers based on α-synuclein,” Journal of Neurochemistry 150 5 Blackwell Publishing Ltd, 626 636 2019 10.1111/jnc.14809 Open DOISearch in Google Scholar

G. E. Alexander, “Biology of Parkinson's disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder,” Dialogues in Clinical Neuroscience, vol. 6, no. 3. pp. 259–280, 2004. doi: 10.31887/dcns.2004.6.3/galexander. AlexanderG. E. “Biology of Parkinson's disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder,” Dialogues in Clinical Neuroscience 6 3 259 280 2004 10.31887/dcns.2004.6.3/galexander Open DOISearch in Google Scholar

M. Lelos, “Overview of Alzheimer's and Parkinson's diseases and the role of protein aggregation in these neurodegenerative diseases,” in Handbook of Innovations in Central Nervous System Regenerative Medicine, Elsevier, 2020, pp. 29–53. doi: 10.1016/B978-0-12-818084-6.00002-7. LelosM. “Overview of Alzheimer's and Parkinson's diseases and the role of protein aggregation in these neurodegenerative diseases,” in Handbook of Innovations in Central Nervous System Regenerative Medicine Elsevier 2020 29 53 10.1016/B978-0-12-818084-6.00002-7 Open DOISearch in Google Scholar

T. Vyas, R. Yadav, C. Solanki, R. Darji, S. Desai, and S. Tanwar, “Deep learning-based scheme to diagnose Parkinson's disease,” Expert Syst., vol. 39, no. 3, Mar. 2022, doi: 10.1111/exsy.12739. VyasT. YadavR. SolankiC. DarjiR. DesaiS. TanwarS. “Deep learning-based scheme to diagnose Parkinson's disease,” Expert Syst. 39 3 Mar. 2022 10.1111/exsy.12739 Open DOISearch in Google Scholar

N. Van Den Berge and A. Ulusoy, “Animal models of brain-first and body-first Parkinson's disease,” Neurobiol. Dis., vol. 163, Feb. 2022, doi: 10.1016/j.nbd.2021.105599. Van Den BergeN. UlusoyA. “Animal models of brain-first and body-first Parkinson's disease,” Neurobiol. Dis. 163 Feb. 2022 10.1016/j.nbd.2021.105599 Open DOISearch in Google Scholar

World Health Organisation, “Launch of WHO's Parkinson disease technical brief,” Who.Int, 2022. https://www.who.int/news/item/14-06-2022-launch-ofwho-s-parkinson-disease-technical-brief World Health Organisation “Launch of WHO's Parkinson disease technical brief,” Who.Int 2022 https://www.who.int/news/item/14-06-2022-launch-ofwho-s-parkinson-disease-technical-brief Search in Google Scholar

C. Jatoth, E. Neelima, A. V. R. Mayuri, and S. R. Annaluri, “Effective monitoring and prediction of Parkinson disease in Smart Cities using intelligent health care system,” Microprocess. Microsyst., vol. 92, no. May, p. 104547, 2022, doi: 10.1016/j.micpro.2022.104547. JatothC. NeelimaE. MayuriA. V. R. AnnaluriS. R. “Effective monitoring and prediction of Parkinson disease in Smart Cities using intelligent health care system,” Microprocess. Microsyst. 92 May 104547 2022 10.1016/j.micpro.2022.104547 Open DOISearch in Google Scholar

wikipedia, “Lewy body.” wikipedia, “Lewy body.” Search in Google Scholar

P. D. and M. D. Society and I. Mumbai, “The PDMDS Story – Parkinson's Disease and Movement.” https://www.parkinsonssocietyindia.com/the-pdmds-story/ P. D. and M. D. Society and I. Mumbai “The PDMDS Story – Parkinson's Disease and Movement.” https://www.parkinsonssocietyindia.com/the-pdmds-story/ Search in Google Scholar

T. John, “The Rights of Persons with Disabilities Act 2016 and Psychiatric Care,” Kerala J. Psychiatry, vol. 33, no. 1, 2020, doi: 10.30834/kjp.33.1.2020.183. JohnT. “The Rights of Persons with Disabilities Act 2016 and Psychiatric Care,” Kerala J. Psychiatry 33 1 2020 10.30834/kjp.33.1.2020.183 Open DOISearch in Google Scholar

D. G. N. RAJU and Secretary to the Govt. of India, THE RIGHTS OF PERSONS WITH DISABILITIES ACT, 2016. 2016. [Online]. Available: https://deoc.in/wp-content/uploads/2018/10/Rights-of-Persons-with-Disabilities-RPWD-Act-2016.pdf D. G. N. RAJU and Secretary to the Govt. of India THE RIGHTS OF PERSONS WITH DISABILITIES ACT, 2016 2016 [Online]. Available: https://deoc.in/wp-content/uploads/2018/10/Rights-of-Persons-with-Disabilities-RPWD-Act-2016.pdf Search in Google Scholar

H. Modi, J. Hathaliya, M. S. Obaidiat, R. Gupta, and S. Tanwar, “Deep Learning-based Parkinson disease Classification using PET Scan Imaging Data,” in 2021 IEEE 6th International Conference on Computing, Communication and Automation, ICCCA 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 837–841. doi: 10.1109/ICCCA52192.2021.9666251. ModiH. HathaliyaJ. ObaidiatM. S. GuptaR. TanwarS. “Deep Learning-based Parkinson disease Classification using PET Scan Imaging Data,” in 2021 IEEE 6th International Conference on Computing, Communication and Automation, ICCCA 2021 Institute of Electrical and Electronics Engineers Inc. 2021 837 841 10.1109/ICCCA52192.2021.9666251 Open DOISearch in Google Scholar

M. M. McGregor and A. B. Nelson, “Circuit Mechanisms of Parkinson's Disease,” Neuron, vol. 101, no. 6. Cell Press, pp. 1042–1056, Mar. 20, 2019. doi: 10.1016/j.neuron.2019.03.004. McGregorM. M. NelsonA. B. “Circuit Mechanisms of Parkinson's Disease,” Neuron 101 6 Cell Press, 1042 1056 Mar. 20 2019 10.1016/j.neuron.2019.03.004 Open DOISearch in Google Scholar

H. Kour and M. K. Gupta, An hybrid deep learning approach for depression prediction from user tweets using feature-rich CNN and bi-directional LSTM, vol. 81, no. 17. Multimedia Tools and Applications, 2022. doi: 10.1007/s11042-022-12648-y. KourH. GuptaM. K. An hybrid deep learning approach for depression prediction from user tweets using feature-rich CNN and bi-directional LSTM 81 17 Multimedia Tools and Applications 2022 10.1007/s11042-022-12648-y Open DOISearch in Google Scholar

“The Good Star t Program 03/03/2022,” PARKINSON'S ASSOCIATION OF SAN DIEGO, 2022. WWW.PARKINSONSASSOCIATION.ORG “The Good Star t Program 03/03/2022,” PARKINSON'S ASSOCIATION OF SAN DIEGO 2022 WWW.PARKINSONSASSOCIATION.ORG Search in Google Scholar

F. J. R. Eccles, N. Sowter, T. Spokes, N. Zarotti, and J. Simpson, “Stigma, self-compassion, and psychological distress among people with Parkinson's,” Disabil. Rehabil., vol. 0, no. 0, pp. 1–9, 2022, doi: 10.1080/09638288.2022.2037743. EcclesF. J. R. SowterN. SpokesT. ZarottiN. SimpsonJ. “Stigma, self-compassion, and psychological distress among people with Parkinson's,” Disabil. Rehabil. 0 0 1 9 2022 10.1080/09638288.2022.2037743 Open DOISearch in Google Scholar

H. Braak and E. Braak, “Pathoanatomy of Parkinson's disease,” J Neurol, vol. 247 [Suppl, 2000, doi: 10.1007/PL00007758. BraakH. BraakE. “Pathoanatomy of Parkinson's disease,” J Neurol 247 Suppl, 2000 10.1007/PL00007758 Open DOISearch in Google Scholar

A. P. Valenti, M. Chita-Tegmark, L. Tickle-Degnen, A. W. Bock, and M. J. Scheutz, “Using topic modeling to infer the emotional state of people living with Parkinson's disease,” Assist. Technol. Taylor Fr., vol. 33, no. 3, pp. 136–145, 2021, doi: 10.1080/10400435.2019.1623342. ValentiA. P. Chita-TegmarkM. Tickle-DegnenL. BockA. W. ScheutzM. J. “Using topic modeling to infer the emotional state of people living with Parkinson's disease,” Assist. Technol. Taylor Fr. 33 3 136 145 2021 10.1080/10400435.2019.1623342 Open DOISearch in Google Scholar

M. N. Dar, M. U. Akram, R. Yuvaraj, S. Gul Khawaja, and M. Murugappan, “EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning,” Comput. Biol. Med., vol. 144, May 2022, doi: 10.1016/j.compbiomed.2022.105327. DarM. N. AkramM. U. YuvarajR. Gul KhawajaS. MurugappanM. “EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning,” Comput. Biol. Med. 144 May 2022 10.1016/j.compbiomed.2022.105327 Open DOISearch in Google Scholar

A. Wootton, N. J. Starkey, and C. C. Barber, “Unmoving and unmoved: experiences and consequences of impaired non-verbal expressivity in Parkinson's patients and their spouses,” Disabil. Rehabil., vol. 41, no. 21, pp. 2516–2527, 2019, doi: 10.1080/09638288.2018.1471166. WoottonA. StarkeyN. J. BarberC. C. “Unmoving and unmoved: experiences and consequences of impaired non-verbal expressivity in Parkinson's patients and their spouses,” Disabil. Rehabil. 41 21 2516 2527 2019 10.1080/09638288.2018.1471166 Open DOISearch in Google Scholar

S. Justyna and R. Burget, “Parkinson's Disease Detection based on Changes of Emotions during Speech,” in 2020 12th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2020, pp. 119–123. JustynaS. BurgetR. “Parkinson's Disease Detection based on Changes of Emotions during Speech,” in 2020 12th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) 2020 119 123 Search in Google Scholar

R. Hoegen, J. Gratch, B. Parkinson, and D. Shore, “Signals of Emotion Regulation in a Social Dilemma: Detection from Face and Context,” in International Conference on Affective Computing and Intelligent Interaction, HoegenR. GratchJ. ParkinsonB. ShoreD. “Signals of Emotion Regulation in a Social Dilemma: Detection from Face and Context,” in International Conference on Affective Computing and Intelligent Interaction Search in Google Scholar

Lucia Pepa, M. Capecci, and M. G. Ceravolo, “Smartwatch based emotion recognition in Parkinson's disease Lucia,” in IEEE International Symposium on Consumer Technologies (ISCT), PepaLucia CapecciM. CeravoloM. G. “Smartwatch based emotion recognition in Parkinson's disease Lucia,” in IEEE International Symposium on Consumer Technologies (ISCT) Search in Google Scholar

T. Lencioni et al., “The effect of music-induced emotion on visual-spatial learning in people with Parkinson's disease_A pilot study,” Parkinsonism Relat. Disord. LencioniT. “The effect of music-induced emotion on visual-spatial learning in people with Parkinson's disease_A pilot study,” Parkinsonism Relat. Disord. Search in Google Scholar

M. T. M. Prenger, R. Madray, K. Van Hedger, M. Anello, and P. A. Macdonald, “Social Symptoms of Parkinson's Disease,” Parkinsons. Dis., vol. 2020, 2020, doi: 10.1155/2020/8846544. PrengerM. T. M. MadrayR. Van HedgerK. AnelloM. MacdonaldP. A. “Social Symptoms of Parkinson's Disease,” Parkinsons. Dis. 2020 2020 10.1155/2020/8846544 Open DOISearch in Google Scholar

M. Mengi and D. Malhotra, Artificial Intelligence Based Techniques for the Detection of Socio-Behavioral Disorders: A Systematic Review, vol. 29, no. 5. Springer Netherlands, 2022. doi: 10.1007/s11831-021-09682-8. MengiM. MalhotraD. Artificial Intelligence Based Techniques for the Detection of Socio-Behavioral Disorders: A Systematic Review 29 5 Springer Netherlands 2022 10.1007/s11831-021-09682-8 Open DOISearch in Google Scholar

S. Yadav, M. Kumar, and P. Saurabh, “Artificial Intelligence Model for Parkinson Disease Detection Using Machine Learning Algorithms,” Biomed. Mater. Devices, no. 0123456789, 2023, doi: 10.1007/s44174-023-00068-x. YadavS. KumarM. SaurabhP. “Artificial Intelligence Model for Parkinson Disease Detection Using Machine Learning Algorithms,” Biomed. Mater. Devices 0123456789 2023 10.1007/s44174-023-00068-x Open DOISearch in Google Scholar

M. Gazda, M. Hires, and P. Drotar, “Multiple-Fine-Tuned Convolutional Neural Networks for Parkinson's Disease Diagnosis from Offline Handwriting,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 52, no. 1, pp. 78–89, 2022, doi: 10.1109/TSMC.2020.3048892. GazdaM. HiresM. DrotarP. “Multiple-Fine-Tuned Convolutional Neural Networks for Parkinson's Disease Diagnosis from Offline Handwriting,” IEEE Trans. Syst. Man, Cybern. Syst. 52 1 78 89 2022 10.1109/TSMC.2020.3048892 Open DOISearch in Google Scholar

J. E. Perkins et al., “Saccade, Pupil, and Blink Responses in Rapid Eye Movement Sleep Behavior Disorder,” Mov. Disord., vol. 36, no. 7, pp. 1720–1726, 2021, doi: 10.1002/mds.28585. PerkinsJ. E. “Saccade, Pupil, and Blink Responses in Rapid Eye Movement Sleep Behavior Disorder,” Mov. Disord. 36 7 1720 1726 2021 10.1002/mds.28585 Open DOISearch in Google Scholar

H. Kathuria et al., “Utility of Imaging of Nigrosome-1 on 3T MRI and Its Comparison with 18F-DOPA PET in the Diagnosis of Idiopathic Parkinson Disease and Atypical Parkinsonism,” Mov. Disord. Clin. Pract., vol. 8, no. 2, pp. 224–230, Feb. 2021, doi: 10.1002/mdc3.13091. KathuriaH. “Utility of Imaging of Nigrosome-1 on 3T MRI and Its Comparison with 18F-DOPA PET in the Diagnosis of Idiopathic Parkinson Disease and Atypical Parkinsonism,” Mov. Disord. Clin. Pract. 8 2 224 230 Feb. 2021 10.1002/mdc3.13091 Open DOISearch in Google Scholar

M. P. Adams, A. Rahmim, and J. Tang, “Improved motor outcome prediction in Parkinson's disease applying deep learning to DaTscan SPECT images,” Comput. Biol. Med., vol. 132, May 2021, doi: 10.1016/j.compbiomed.2021.104312. AdamsM. P. RahmimA. TangJ. “Improved motor outcome prediction in Parkinson's disease applying deep learning to DaTscan SPECT images,” Comput. Biol. Med. 132 May 2021 10.1016/j.compbiomed.2021.104312 Open DOISearch in Google Scholar

N. Salari, M. Kazeminia, H. Sagha, A. Daneshkhah, A. Ahmadi, and M. Mohammadi, “The performance of various machine learning methods for Parkinson's disease recognition: a systematic review,” Curr. Psychol., vol. 42, no. 20, pp. 16637–16660, 2023, doi: 10.1007/s12144-022-02949-8. SalariN. KazeminiaM. SaghaH. DaneshkhahA. AhmadiA. MohammadiM. “The performance of various machine learning methods for Parkinson's disease recognition: a systematic review,” Curr. Psychol. 42 20 16637 16660 2023 10.1007/s12144-022-02949-8 Open DOISearch in Google Scholar

Z. Ayaz, S. Naz, N. H. Khan, I. Razzak, and M. Imran, Automated methods for diagnosis of Parkinson's disease and predicting severity level, vol. 35, no. 20. Springer London, 2022. doi: 10.1007/s00521-021-06626-y. AyazZ. NazS. KhanN. H. RazzakI. ImranM. Automated methods for diagnosis of Parkinson's disease and predicting severity level 35 20 Springer London, 2022 10.1007/s00521-021-06626-y Open DOISearch in Google Scholar

H. Kour and M. K. Gupta, “AI Assisted Attention Mechanism for Hybrid Neural Model to Assess Online Attitudes About COVID-19,” Neural Process. Lett., 2022, doi: 10.1007/s11063-022-11112-0. KourH. GuptaM. K. “AI Assisted Attention Mechanism for Hybrid Neural Model to Assess Online Attitudes About COVID-19,” Neural Process. Lett. 2022 10.1007/s11063-022-11112-0 Open DOISearch in Google Scholar

A. Laar, A. L. Silva de Lima, B. R. Maas, B. R. Bloem, and N. M. de Vries, “Successful implementation of technology in the management of Parkinson's disease: Barriers and facilitators,” Clin. Park. Relat. Disord., vol. 8, no. November 2022, p. 100188, 2023, doi: 10.1016/j.prdoa.2023.100188. LaarA. Silva de LimaA. L. MaasB. R. BloemB. R. de VriesN. M. “Successful implementation of technology in the management of Parkinson's disease: Barriers and facilitators,” Clin. Park. Relat. Disord. 8 no. November 2022, 100188 2023 10.1016/j.prdoa.2023.100188 Open DOISearch in Google Scholar

H. Kour and M. K. Gupta, “Predicting the language of depression from multivariate twitter data using a feature-rich hybrid deep learning model,” Concurr. Comput. Pract. Exp., vol. 34, no. 24, pp. 1–21, 2022, doi: 10.1002/cpe.7224. KourH. GuptaM. K. “Predicting the language of depression from multivariate twitter data using a feature-rich hybrid deep learning model,” Concurr. Comput. Pract. Exp. 34 24 1 21 2022 10.1002/cpe.7224 Open DOISearch in Google Scholar

M. G. Krokidis et al., “A Sensor-Based Perspective in Early-Stage Parkinson's Disease: Current State and the Need for Machine Learning Processes,” Sensors, 2022, doi: https://doi.org/10.3390/s22020409. KrokidisM. G. “A Sensor-Based Perspective in Early-Stage Parkinson's Disease: Current State and the Need for Machine Learning Processes,” Sensors 2022 doi: https://doi.org/10.3390/s22020409. Search in Google Scholar

S. Shafiq, M. S. Kaiser, M. Mahmud, M. S. Hossain, and K. Andersson, “Comprehensive Analysis of Nature-Inspired Algorithms for Parkinson's Disease Diagnosis,” IEEE Access, vol. 11, pp. 479–488, 2023, doi: 10.1016/B978-0-323-46294-5.00028-5. ShafiqS. KaiserM. S. MahmudM. HossainM. S. AnderssonK. “Comprehensive Analysis of Nature-Inspired Algorithms for Parkinson's Disease Diagnosis,” IEEE Access 11 479 488 2023 10.1016/B978-0-323-46294-5.00028-5 Open DOISearch in Google Scholar

M. Shaban, “Deep Learning for Parkinson's Disease Diagnosis: A Short Survey,” Comput. Spec. Issue Futur. Syst. Based Healthc. 5.0 Pandemic Prep., 2023, doi: https://doi.org/10.3390/computers12030058. ShabanM. “Deep Learning for Parkinson's Disease Diagnosis: A Short Survey,” Comput. Spec. Issue Futur. Syst. Based Healthc. 5.0 Pandemic Prep. 2023 doi: https://doi.org/10.3390/computers12030058. Search in Google Scholar

S. Kumar, B. Basumatary, R. Bansal, and A. Kumar, “Techniques for the detection and management of freezing of gait in Parkinson's disease – A systematic review and future perspectives,” MethodsX, vol. 10, no. December 2022, p. 102106, 2023, doi: 10.1016/j.mex.2023.102106. KumarS. BasumataryB. BansalR. KumarA. “Techniques for the detection and management of freezing of gait in Parkinson's disease – A systematic review and future perspectives,” MethodsX 10 no. December 2022, 102106 2023 10.1016/j.mex.2023.102106 Open DOISearch in Google Scholar

S. Dixit et al., “A Comprehensive Review on AI-Enabled Models for Parkinson's Disease Diagnosis,” Electron., vol. 12, no. 4, pp. 1–50, 2023, doi: 10.3390/electronics12040783. DixitS. “A Comprehensive Review on AI-Enabled Models for Parkinson's Disease Diagnosis,” Electron. 12 4 1 50 2023 10.3390/electronics12040783 Open DOISearch in Google Scholar

K. Khanna, S. Gambhir, and M. Gambhir, “Comparative analysis of machine learning techniques for Parkinson's detection: A review,” Multimed. Tools Appl., no. 0123456789, 2023, doi: 10.1007/s11042-023-15414-w. KhannaK. GambhirS. GambhirM. “Comparative analysis of machine learning techniques for Parkinson's detection: A review,” Multimed. Tools Appl. 0123456789 2023 10.1007/s11042-023-15414-w Open DOISearch in Google Scholar

J. Zhang, “Mining imaging and clinical data with machine learning approaches for the diagnosis and early detection of Parkinson's disease,” npj Park. Dis., vol. 8, no. 1, 2022, doi: 10.1038/s41531-021-00266-8. ZhangJ. “Mining imaging and clinical data with machine learning approaches for the diagnosis and early detection of Parkinson's disease,” npj Park. Dis. 8 1 2022 10.1038/s41531-021-00266-8 Open DOISearch in Google Scholar

A. S. Chandrabhatla, I. J. Pomeraniec, and A. Ksendzovsky, “Co-evolution of machine learning and digital technologies to improve monitoring of Parkinson's disease motor symptoms,” npj Digit. Med., vol. 5, no. 1, pp. 1–18, 2022, doi: 10.1038/s41746-022-00568-y. ChandrabhatlaA. S. PomeraniecI. J. KsendzovskyA. “Co-evolution of machine learning and digital technologies to improve monitoring of Parkinson's disease motor symptoms,” npj Digit. Med. 5 1 1 18 2022 10.1038/s41746-022-00568-y Open DOISearch in Google Scholar

K. Giannakopoulou and I. Roussaki, “Internet of Things Technologies and Machine Learning Methods for Parkinson's Disease Diagnosis, Monitoring and Management: A Systematic Review,” Sensors, 2022, doi: https://doi.org/10.3390/s22051799. GiannakopoulouK. RoussakiI. “Internet of Things Technologies and Machine Learning Methods for Parkinson's Disease Diagnosis, Monitoring and Management: A Systematic Review,” Sensors 2022 doi: https://doi.org/10.3390/s22051799. Search in Google Scholar

A. Rana, A. Dumka, R. Singh, M. K. Panda, and N. Priyadarshi, “A Computerized Analysis with Machine Learning Techniques for the Diagnosis of Parkinson's Disease: Past Studies and Future Perspectives,” Diagnostics, vol. 12, no. 11, 2022, doi: 10.3390/diagnostics12112708. RanaA. DumkaA. SinghR. PandaM. K. PriyadarshiN. “A Computerized Analysis with Machine Learning Techniques for the Diagnosis of Parkinson's Disease: Past Studies and Future Perspectives,” Diagnostics 12 11 2022 10.3390/diagnostics12112708 Open DOISearch in Google Scholar

M. Tanveer, A. H. Rashid, R. Kumar, and R. Balasubramanian, “Parkinson's disease diagnosis using neural networks: Survey and comprehensive evaluation,” Inf. Process. Manag., vol. 59, no. 3, p. 102909, 2022, doi: 10.1016/j.ipm.2022.102909. TanveerM. RashidA. H. KumarR. BalasubramanianR. “Parkinson's disease diagnosis using neural networks: Survey and comprehensive evaluation,” Inf. Process. Manag. 59 3 102909 2022 10.1016/j.ipm.2022.102909 Open DOISearch in Google Scholar

A. ul Haq et al., “A survey of deep learning techniques based Parkinson's disease recognition methods employing clinical data,” Expert Syst. Appl., vol. 208, no. July, p. 118045, 2022, doi: 10.1016/j.eswa.2022.118045. ul HaqA. “A survey of deep learning techniques based Parkinson's disease recognition methods employing clinical data,” Expert Syst. Appl. 208 July 118045 2022 10.1016/j.eswa.2022.118045 Open DOISearch in Google Scholar

A. Rana, A. Dumka, R. Singh, M. K. Panda, N. Priyadarshi, and B. Twala, “Imperative Role of Machine Learning Algorithm for Detection of Parkinson's Disease: Review, Challenges and Recommendations,” Diagnostics, mdpi, 2022, https://doi.org/10.3390/diagnostics12082003#Academic. RanaA. DumkaA. SinghR. PandaM. K. PriyadarshiN. TwalaB. “Imperative Role of Machine Learning Algorithm for Detection of Parkinson's Disease: Review, Challenges and Recommendations,” Diagnostics, mdpi 2022 https://doi.org/10.3390/diagnostics12082003#Academic. Search in Google Scholar

M. S. Alzubaidi et al., “The role of neural network for the detection of parkinson's disease: A scoping review,” Healthc., vol. 9, no. 6, pp. 1–20, 2021, doi: 10.3390/healthcare9060740. AlzubaidiM. S. “The role of neural network for the detection of parkinson's disease: A scoping review,” Healthc. 9 6 1 20 2021 10.3390/healthcare9060740 Open DOISearch in Google Scholar

H. W. Loh et al., “Application of deep learning models for automated identification of parkinson's disease: A review (2011–2021),” Sensors, vol. 21, no. 21, pp. 1–25, 2021, doi: 10.3390/s21217034. LohH. W. “Application of deep learning models for automated identification of parkinson's disease: A review (2011–2021),” Sensors 21 21 1 25 2021 10.3390/s21217034 Open DOISearch in Google Scholar

M. B. T. Noor, N. Z. Zenia, M. S. Kaiser, S. Al Mamun, and M. Mahmud, “Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer's disease, Parkinson's disease and schizophrenia,” Brain Informatics, vol. 7, no. 1, 2020, doi: 10.1186/s40708-020-00112-2. NoorM. B. T. ZeniaN. Z. KaiserM. S. Al MamunS. MahmudM. “Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer's disease, Parkinson's disease and schizophrenia,” Brain Informatics 7 1 2020 10.1186/s40708-020-00112-2 Open DOISearch in Google Scholar

H. Khachnaoui, R. Mabrouk, and N. Khlifa, “Machine learning and deep learning for clinical data and PET/SPECT imaging in parkinson's disease: A review,” IET Image Process., vol. 14, no. 16, pp. 1–14, 2020, doi: 10.1049/iet-ipr.2020.1048. KhachnaouiH. MabroukR. KhlifaN. “Machine learning and deep learning for clinical data and PET/SPECT imaging in parkinson's disease: A review,” IET Image Process. 14 16 1 14 2020 10.1049/iet-ipr.2020.1048 Open DOISearch in Google Scholar

L. Di Biase et al., “Gait analysis in parkinson's disease: An overview of the most accurate markers for diagnosis and symptoms monitoring,” Sensors (Switzerland), vol. 20, no. 12, p. 1, 2020, doi: 10.3390/s20123529. Di BiaseL. “Gait analysis in parkinson's disease: An overview of the most accurate markers for diagnosis and symptoms monitoring,” Sensors (Switzerland) 20 12 1 2020 10.3390/s20123529 Open DOISearch in Google Scholar

S. Mangesius et al., “Novel decision algorithm to discriminate parkinsonism with combined blood and imaging biomarkers,” Park. Relat. Disord., vol. 77, pp. 57–63, Aug. 2020, doi: 10.1016/j.parkreldis.2020.05.033. MangesiusS. “Novel decision algorithm to discriminate parkinsonism with combined blood and imaging biomarkers,” Park. Relat. Disord. 77 57 63 Aug. 2020 10.1016/j.parkreldis.2020.05.033 Open DOISearch in Google Scholar

S. Sivaranjini and C. M. Sujatha, “Deep learning based diagnosis of Parkinson's disease using convolutional neural network,” Multimed. Tools Appl., vol. 79, no. 21–22, pp. 15467–15479, Jun. 2020, doi: 10.1007/s11042-019-7469-8. SivaranjiniS. SujathaC. M. “Deep learning based diagnosis of Parkinson's disease using convolutional neural network,” Multimed. Tools Appl. 79 21–22 15467 15479 Jun. 2020 10.1007/s11042-019-7469-8 Open DOISearch in Google Scholar

G. Solana-Lavalle and R. Rosas-Romero, “Classification of PPMI MRI scans with voxel-based morphometry and machine learning to assist in the diagnosis of Parkinson's disease,” Comput. Methods Programs Biomed., vol. 198, Jan. 2021, doi: 10.1016/j.cmpb.2020.105793. Solana-LavalleG. Rosas-RomeroR. “Classification of PPMI MRI scans with voxel-based morphometry and machine learning to assist in the diagnosis of Parkinson's disease,” Comput. Methods Programs Biomed. 198 Jan. 2021 10.1016/j.cmpb.2020.105793 Open DOISearch in Google Scholar

E. Huseyn, “Deep Learning Based Early Diagnostics of Parkinson's Disease,” 2020. doi: arXiv Preprint arXiv:2008.01792. HuseynE. “Deep Learning Based Early Diagnostics of Parkinson's Disease,” 2020 doi: arXiv Preprint arXiv:2008.01792. Search in Google Scholar

S. Chakraborty, S. Aich, and H. C. Kim, “Detection of Parkinson's disease from 3T T1 weighted MRI scans using 3D convolutional neural network,” Diagnostics, vol. 10, no. 6, pp. 1–17, 2020, doi: 10.3390/diagnostics10060402. ChakrabortyS. AichS. KimH. C. “Detection of Parkinson's disease from 3T T1 weighted MRI scans using 3D convolutional neural network,” Diagnostics 10 6 1 17 2020 10.3390/diagnostics10060402 Open DOISearch in Google Scholar

X. Cui et al., “Diagnosis of Parkinson's disease based on feature fusion on T2 MRI images,” Int. J. Intell. Syst. - Wiley Online Libr., vol. 37, no. 12, pp. 11362–11381, 2022, doi: https://doi.org/10.1002/int.23046. CuiX. “Diagnosis of Parkinson's disease based on feature fusion on T2 MRI images,” Int. J. Intell. Syst. - Wiley Online Libr. 37 12 11362 11381 2022 doi: https://doi.org/10.1002/int.23046. Search in Google Scholar

S. Sangeetha, K. Baskar, P. C. Kalaivaani, and T. Kumaravel, “Deep Learning-based Early Parkinson's Disease Detection from Brain MRI Image,” in ICICCS-2023, 2023, pp. 490–495. [Online]. Available: https://ieeexplore.ieee.org/document/10142754 SangeethaS. BaskarK. KalaivaaniP. C. KumaravelT. “Deep Learning-based Early Parkinson's Disease Detection from Brain MRI Image,” in ICICCS-2023 2023 490 495 [Online]. Available: https://ieeexplore.ieee.org/document/10142754 Search in Google Scholar

G. C. Monte-Rubio et al., “Parameters from site classification to harmonize MRI clinical studies: Application to a multi-site Parkinson's disease data-set,” Hum. Brain Mapp., vol. 43, no. 10, pp. 3130–3142, 2022, doi: 10.1002/hbm.25838. Monte-RubioG. C. “Parameters from site classification to harmonize MRI clinical studies: Application to a multi-site Parkinson's disease data-set,” Hum. Brain Mapp. 43 10 3130 3142 2022 10.1002/hbm.25838 Open DOISearch in Google Scholar

J. Hathaliya et al., “Stacked Model-Based Classification of Parkinson's Disease Patients Using Imaging Biomarker Data,” Biosensors, vol. 12, no. 8, Aug. 2022, doi: 10.3390/bios12080579. HathaliyaJ. “Stacked Model-Based Classification of Parkinson's Disease Patients Using Imaging Biomarker Data,” Biosensors 12 8 Aug. 2022 10.3390/bios12080579 Open DOISearch in Google Scholar

R. Splinter, “Positron emission tomography,” Handbook of Physics in Medicine and Biology, 2010. SplinterR. “Positron emission tomography,” Handbook of Physics in Medicine and Biology 2010 Search in Google Scholar

A. P. Strafella et al., “Imaging Markers of Progression in Parkinson's Disease,” Movement Disorders Clinical Practice, vol. 5, no. 6. Wiley-Blackwell, pp. 586–596, Nov. 01, 2018. doi: 10.1002/mdc3.12673. StrafellaA. P. “Imaging Markers of Progression in Parkinson's Disease,” Movement Disorders Clinical Practice 5 6 Wiley-Blackwell, 586 596 Nov. 01 2018 10.1002/mdc3.12673 Open DOISearch in Google Scholar

Y. Dai, Z. Tang, Y. Wang, and Z. Xu, “Data Driven Intelligent Diagnostics for Parkinson's Disease,” IEEE Access, vol. 7, pp. 106941–106950, 2019, doi: 10.1109/ACCESS.2019.2931744. DaiY. TangZ. WangY. XuZ. “Data Driven Intelligent Diagnostics for Parkinson's Disease,” IEEE Access 7 106941 106950 2019 10.1109/ACCESS.2019.2931744 Open DOISearch in Google Scholar

S. Booth, K. W. Park, C. S. Lee, and J. H. Ko, “Predicting cognitive decline in Parkinson's disease using FDG-PET based supervised learning,” J. Clin. Invest., Oct. 2022, doi: 10.1172/jci157074. BoothS. ParkK. W. LeeC. S. KoJ. H. “Predicting cognitive decline in Parkinson's disease using FDG-PET based supervised learning,” J. Clin. Invest. Oct. 2022 10.1172/jci157074 Open DOISearch in Google Scholar

Y. Wu et al., “Use of radiomic features and support vector machine to distinguish Parkinson's disease cases from normal controls,” Ann. Transl. Med., vol. 7, no. 23, pp. 773–773, Dec. 2019, doi: 10.21037/atm.2019.11.26. WuY. “Use of radiomic features and support vector machine to distinguish Parkinson's disease cases from normal controls,” Ann. Transl. Med. 7 23 773 773 Dec. 2019 10.21037/atm.2019.11.26 Open DOISearch in Google Scholar

X. Sun et al., “Use of deep learning-based radiomics to differentiate Parkinson's disease patients from normal controls: a study based on [18F]FDG PET imaging,” Eur. Radiol., vol. 32, no. 11, pp. 8008–8018, 2022, doi: 10.1007/s00330-022-08799-z. SunX. “Use of deep learning-based radiomics to differentiate Parkinson's disease patients from normal controls: a study based on [18F]FDG PET imaging,” Eur. Radiol. 32 11 8008 8018 2022 10.1007/s00330-022-08799-z Open DOISearch in Google Scholar

B. Abhisheka, S. K. Biswas, B. Purkayastha, D. Das, and A. Escargueil, Recent trend in medical imaging modalities and their applications in disease diagnosis: a review, no. 0123456789. Springer US, 2023. doi: 10.1007/s11042-023-17326-1. AbhishekaB. BiswasS. K. PurkayasthaB. DasD. EscargueilA. Recent trend in medical imaging modalities and their applications in disease diagnosis: a review no. 0123456789. Springer US, 2023 10.1007/s11042-023-17326-1 Open DOISearch in Google Scholar

M. Rumman, A. N. Tasneem, S. Farzana, M. I. Pavel, and M. A. Alam, “Early detection of Parkinson's disease using image processing and artificial neural network,” 2018 Jt. 7th Int. Conf. Informatics, Electron. Vis. 2nd Int. Conf. Imaging, Vis. Pattern Recognition, ICIEV-IVPR 2018, no. 1, pp. 256–261, 2019, doi: 10.1109/ICIEV.2018.8641081. RummanM. TasneemA. N. FarzanaS. PavelM. I. AlamM. A. “Early detection of Parkinson's disease using image processing and artificial neural network,” 2018 Jt. 7th Int. Conf. Informatics, Electron. Vis. 2nd Int. Conf. Imaging, Vis. Pattern Recognition, ICIEV-IVPR 2018 1 256 261 2019 10.1109/ICIEV.2018.8641081 Open DOISearch in Google Scholar

J. Hathaliya et al., “Convolutional Neural Network-Based Parkinson Disease Classification Using SPECT Imaging Data,” Mathematics, vol. 10, no. 15, Aug. 2022, doi: 10.3390/math10152566. HathaliyaJ. “Convolutional Neural Network-Based Parkinson Disease Classification Using SPECT Imaging Data,” Mathematics 10 15 Aug. 2022 10.3390/math10152566 Open DOISearch in Google Scholar

P. R. Magesh, R. D. Myloth, and R. J. Tom, “An Explainable Machine Learning Model for Early Detection of Parkinson's Disease using LIME on DaTSCAN Imagery,” Comput. Biol. Med., vol. 126, Nov. 2020, doi: 10.1016/j.compbiomed.2020.104041. MageshP. R. MylothR. D. TomR. J. “An Explainable Machine Learning Model for Early Detection of Parkinson's Disease using LIME on DaTSCAN Imagery,” Comput. Biol. Med. 126 Nov. 2020 10.1016/j.compbiomed.2020.104041 Open DOISearch in Google Scholar

H. R. Pereira and H. A. Ferreira, “Classification of Patients with Parkinson's Disease Using Medical Imaging and Artificial Intelligence Algorithms,” IFMBE Proc., vol. 76, pp. 2043–2056, 2020, doi: 10.1007/978-3-030-31635-8_241. PereiraH. R. FerreiraH. A. “Classification of Patients with Parkinson's Disease Using Medical Imaging and Artificial Intelligence Algorithms,” IFMBE Proc. 76 2043 2056 2020 10.1007/978-3-030-31635-8_241 Open DOISearch in Google Scholar

M. Wenzel et al., “Automatic classification of dopamine transporter SPECT: deep convolutional neural networks can be trained to be robust with respect to variable image characteristics,” Eur. J. Nucl. Med. Mol. Imaging, vol. 46, no. 13, pp. 2800–2811, Dec. 2019, doi: 10.1007/s00259-019-04502-5. WenzelM. “Automatic classification of dopamine transporter SPECT: deep convolutional neural networks can be trained to be robust with respect to variable image characteristics,” Eur. J. Nucl. Med. Mol. Imaging 46 13 2800 2811 Dec. 2019 10.1007/s00259-019-04502-5 Open DOISearch in Google Scholar

A. Ortiz, J. Munilla, M. Martínez-Ibañez, J. M. Górriz, J. Ramírez, and D. Salas-Gonzalez, “Parkinson's disease detection using isosurfaces-based features and convolutional neural networks,” Front. Neuroinform., vol. 13, May 2019, doi: 10.3389/fninf.2019.00048. OrtizA. MunillaJ. Martínez-IbañezM. GórrizJ. M. RamírezJ. Salas-GonzalezD. “Parkinson's disease detection using isosurfaces-based features and convolutional neural networks,” Front. Neuroinform. 13 May 2019 10.3389/fninf.2019.00048 Open DOISearch in Google Scholar

T. Mortezazadeh, H. Seyedarabi, B. Mahmoudian, and J. P. Islamian, “Imaging modalities in differential diagnosis of Parkinson's disease: opportunities and challenges,” Egypt. J. Radiol. Nucl. Med., vol. 52, no. 1, 2021, doi: 10.1186/s43055-021-00454-9. MortezazadehT. SeyedarabiH. MahmoudianB. IslamianJ. P. “Imaging modalities in differential diagnosis of Parkinson's disease: opportunities and challenges,” Egypt. J. Radiol. Nucl. Med. 52 1 2021 10.1186/s43055-021-00454-9 Open DOISearch in Google Scholar

M. K. Reddy and P. Alku, “Exemplar-based Sparse Representations for Detection of Parkinson's Disease from Speech,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. PP, pp. 1–11, 2023, doi: 10.1109/TASLP.2023.3260709. ReddyM. K. AlkuP. “Exemplar-based Sparse Representations for Detection of Parkinson's Disease from Speech,” IEEE/ACM Trans. Audio Speech Lang. Process. vol. PP, 1 11 2023 10.1109/TASLP.2023.3260709 Open DOISearch in Google Scholar

S. C. and S. S. S. Aarushi Agarwal, “International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016: 3rd-5th, March 2016,” S. C. and S. S. S. Aarushi Agarwal “International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016: 3rd-5th, March 2016,” Search in Google Scholar

A. U. Haq et al., “Feature Selection Based on L1-Norm Support Vector Machine and Effective Recognition System for Parkinson's Disease Using Voice Recordings,” IEEE Access, vol. 7, pp. 37718–37734, 2019, doi: 10.1109/ACCESS.2019.2906350. HaqA. U. “Feature Selection Based on L1-Norm Support Vector Machine and Effective Recognition System for Parkinson's Disease Using Voice Recordings,” IEEE Access 7 37718 37734 2019 10.1109/ACCESS.2019.2906350 Open DOISearch in Google Scholar

Z. Soumaya, B. D. Taoufiq, N. Benayad, B. Achraf, and A. Ammoumou, “A Hybrid Method for the Diagnosis and Classifying Parkinson's Patients based on Time – frequency Domain Properties and K - nearest Neighbor,” J. Med. Signals Sensors, 2020, doi: 10.4103/jmss.JMSS_61_18. SoumayaZ. TaoufiqB. D. BenayadN. AchrafB. AmmoumouA. “A Hybrid Method for the Diagnosis and Classifying Parkinson's Patients based on Time – frequency Domain Properties and K - nearest Neighbor,” J. Med. Signals Sensors 2020 10.4103/jmss.JMSS_61_18 Open DOISearch in Google Scholar

I. Karabayir, S. M. Goldman, S. Pappu, and O. Akbilgic, “Gradient boosting for Parkinson's disease diagnosis from voice recordings,” BMC Med. Inform. Decis. Mak., vol. 20, no. 1, pp. 1–7, 2020, doi: 10.1186/s12911-020-01250-7. KarabayirI. GoldmanS. M. PappuS. AkbilgicO. “Gradient boosting for Parkinson's disease diagnosis from voice recordings,” BMC Med. Inform. Decis. Mak. 20 1 1 7 2020 10.1186/s12911-020-01250-7 Open DOISearch in Google Scholar

Z. Soumaya, B. Drissi Taoufiq, N. Benayad, K. Yunus, and A. Abdelkrim, “The detection of Parkinson disease using the genetic algorithm and SVM classifier,” Appl. Acoust., vol. 171, 2021, doi: 10.1016/j.apacoust.2020.107528. SoumayaZ. Drissi TaoufiqB. BenayadN. YunusK. AbdelkrimA. “The detection of Parkinson disease using the genetic algorithm and SVM classifier,” Appl. Acoust. 171 2021 10.1016/j.apacoust.2020.107528 Open DOISearch in Google Scholar

S. Stuart et al., “Pro-Saccades Predict Cognitive Decline in Parkinson's Disease: ICICLE-PD,” Mov. Disord., vol. 34, no. 11, pp. 1690–1698, 2019, doi: 10.1002/mds.27813. StuartS. “Pro-Saccades Predict Cognitive Decline in Parkinson's Disease: ICICLE-PD,” Mov. Disord. 34 11 1690 1698 2019 10.1002/mds.27813 Open DOISearch in Google Scholar

F. Raschellà, S. Scafa, A. Puiatti, E. Martin Moraud, and P. L. Ratti, “Actigraphy Enables Home Screening of Rapid Eye Movement Behavior Disorder in Parkinson's Disease,” Annals of Neurology, vol. 93, no. 2. pp. 317–329, 2023. doi: 10.1002/ana.26517. RaschellàF. ScafaS. PuiattiA. Martin MoraudE. RattiP. L. “Actigraphy Enables Home Screening of Rapid Eye Movement Behavior Disorder in Parkinson's Disease,” Annals of Neurology 93 2 317 329 2023 10.1002/ana.26517 Open DOISearch in Google Scholar

J. Bek, E. Poliakoff, and K. Lander, “Measuring emotion recognition by people with Parkinson's disease using eye-tracking with dynamic facial expressions,” J. Neurosci. Methods, vol. 331, p. 108524, 2020, doi: 10.1016/j.jneumeth.2019.108524. BekJ. PoliakoffE. LanderK. “Measuring emotion recognition by people with Parkinson's disease using eye-tracking with dynamic facial expressions,” J. Neurosci. Methods 331 108524 2020 10.1016/j.jneumeth.2019.108524 Open DOISearch in Google Scholar

S. Masiala, W. Huijbers, and M. Atzmueller, “Feature-Set-Engineering for Detecting Freezing of Gait in Parkinson's Disease using Deep Recurrent Neural Networks,” Electr. Eng. Syst. Sci., 2019, [Online]. Available: https://arxiv.org/abs/1909.03428 MasialaS. HuijbersW. AtzmuellerM. “Feature-Set-Engineering for Detecting Freezing of Gait in Parkinson's Disease using Deep Recurrent Neural Networks,” Electr. Eng. Syst. Sci. 2019 [Online]. Available: https://arxiv.org/abs/1909.03428 Search in Google Scholar

S. Rupprechter et al., “A clinically interpretable computer-vision based method for quantifying gait in parkinson's disease,” Sensors, vol. 21, no. 16, pp. 1–21, 2021, doi: 10.3390/s21165437. RupprechterS. “A clinically interpretable computer-vision based method for quantifying gait in parkinson's disease,” Sensors 21 16 1 21 2021 10.3390/s21165437 Open DOISearch in Google Scholar

N. Kour, Sunanda, and S. Arora, “Computer-vision based diagnosis of Parkinson's disease via gait: A survey,” IEEE Access, vol. 7, pp. 156620–156645, 2019, doi: 10.1109/ACCESS.2019.2949744. KourN. Sunanda AroraS. “Computer-vision based diagnosis of Parkinson's disease via gait: A survey,” IEEE Access 7 156620 156645 2019 10.1109/ACCESS.2019.2949744 Open DOISearch in Google Scholar

S. B. Zahra, M. A. Khan, S. Abbas, K. M. Khan, M. A. Al-Ghamdi, and S. H. Almotiri, “Marker-based and marker-less motion capturing video data: Person and activity identification comparison based on machine learning approaches,” Comput. Mater. Contin., vol. 66, no. 2, pp. 1269–1282, 2020, doi: 10.32604/cmc.2020.012778. ZahraS. B. KhanM. A. AbbasS. KhanK. M. Al-GhamdiM. A. AlmotiriS. H. “Marker-based and marker-less motion capturing video data: Person and activity identification comparison based on machine learning approaches,” Comput. Mater. Contin. 66 2 1269 1282 2020 10.32604/cmc.2020.012778 Open DOISearch in Google Scholar

B. Sathya Bama and Y. Bevish Jinila, “Vision-based gait analysis for real-time Parkinson disease identification and diagnosis system,” Heal. Syst., pp. 1–11, Sep. 2022, doi: 10.1080/20476965.2022.2125838. Sathya BamaB. Bevish JinilaY. “Vision-based gait analysis for real-time Parkinson disease identification and diagnosis system,” Heal. Syst. 1 11 Sep. 2022 10.1080/20476965.2022.2125838 Open DOISearch in Google Scholar

N. Kour, S. Gupta, and S. Arora, “A vision-based clinical analysis for classification of knee osteoarthritis, Parkinson's disease and normal gait with severity based on k-nearest neighbour,” Expert Syst., vol. 39, no. 6, pp. 1–36, 2022, doi: 10.1111/exsy.12955. KourN. GuptaS. AroraS. “A vision-based clinical analysis for classification of knee osteoarthritis, Parkinson's disease and normal gait with severity based on k-nearest neighbour,” Expert Syst. 39 6 1 36 2022 10.1111/exsy.12955 Open DOISearch in Google Scholar

X. Pei, H. Fan, and Y. Tang, “Temporal pyramid attention-based spatiotemporal fusion model for Parkinson's disease diagnosis from gait data,” IET Signal Process., vol. 15, no. 2, pp. 80–87, 2021, doi: 10.1049/sil2.12018. PeiX. FanH. TangY. “Temporal pyramid attention-based spatiotemporal fusion model for Parkinson's disease diagnosis from gait data,” IET Signal Process. 15 2 80 87 2021 10.1049/sil2.12018 Open DOISearch in Google Scholar

Y. Xia, Z. M. Yao, Q. Ye, and N. Cheng, “A Dual-Modal Attention-Enhanced Deep Learning Network for Quantification of Parkinson's Disease Characteristics,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 1, pp. 42–51, 2020, doi: 10.1109/TNSRE.2019.2946194. XiaY. YaoZ. M. YeQ. ChengN. “A Dual-Modal Attention-Enhanced Deep Learning Network for Quantification of Parkinson's Disease Characteristics,” IEEE Trans. Neural Syst. Rehabil. Eng. 28 1 42 51 2020 10.1109/TNSRE.2019.2946194 Open DOISearch in Google Scholar

Y. Guo, J. Yang, Y. Liu, X. Chen, and G. Z. Yang, “Detection and assessment of Parkinson's disease based on gait analysis: A survey,” Front. Aging Neurosci., vol. 14, 2022, doi: 10.3389/fnagi.2022.916971. GuoY. YangJ. LiuY. ChenX. YangG. Z. “Detection and assessment of Parkinson's disease based on gait analysis: A survey,” Front. Aging Neurosci. 14 2022 10.3389/fnagi.2022.916971 Open DOISearch in Google Scholar

A. A. Bhurane, S. Dhok, M. Sharma, R. Yuvaraj, M. Murugappan, and U. R. Acharya, “Diagnosis of Parkinson's disease from electroencephalography signals using linear and self-similarity features,” Expert Syst., vol. 39, no. 7, 2022, doi: 10.1111/exsy.12472. BhuraneA. A. DhokS. SharmaM. YuvarajR. MurugappanM. AcharyaU. R. “Diagnosis of Parkinson's disease from electroencephalography signals using linear and self-similarity features,” Expert Syst. 39 7 2022 10.1111/exsy.12472 Open DOISearch in Google Scholar

P. Chawla, S. B. Rana, H. Kaur, K. Singh, R. Yuvaraj, and M. Murugappan, “A decision support system for automated diagnosis of Parkinson's disease from EEG using FAWT and entropy features,” Biomed. Signal Process. Control, vol. 79, no. P1, p. 104116, 2023, doi: 10.1016/j.bspc.2022.104116. ChawlaP. RanaS. B. KaurH. SinghK. YuvarajR. MurugappanM. “A decision support system for automated diagnosis of Parkinson's disease from EEG using FAWT and entropy features,” Biomed. Signal Process. Control 79 P1 104116 2023 10.1016/j.bspc.2022.104116 Open DOISearch in Google Scholar

N. Wagh and Y. Varatharajah, “EEG-GCNN: Augmenting Electroencephalogram-based Neurological Disease Diagnosis using a Domain-guided Graph Convolutional Neural Network,” Proc. Mach. Learn. Res., Mach. Learn. Heal., pp. 1–12, 2020, [Online]. Available: http://arxiv.org/abs/2011.12107 WaghN. VaratharajahY. “EEG-GCNN: Augmenting Electroencephalogram-based Neurological Disease Diagnosis using a Domain-guided Graph Convolutional Neural Network,” Proc. Mach. Learn. Res., Mach. Learn. Heal. 1 12 2020 [Online]. Available: http://arxiv.org/abs/2011.12107 Search in Google Scholar

B. F. O. Coelho, A. B. R. Massaranduba, C. A. dos S. Souza, G. G. Viana, I. Brys, and R. P. Ramos, “Parkinson's disease effective biomarkers based on Hjorth features improved by machine learning,” Expert Syst. Appl., vol. 212, no. August 2022, p. 118772, 2023, doi: 10.1016/j.eswa.2022.118772. CoelhoB. F. O. MassarandubaA. B. R. SouzaC. A. dos S. VianaG. G. BrysI. RamosR. P. “Parkinson's disease effective biomarkers based on Hjorth features improved by machine learning,” Expert Syst. Appl. 212 August 2022 118772 2023 10.1016/j.eswa.2022.118772 Open DOISearch in Google Scholar

S. K. Khare, V. Bajaj, and U. R. Acharya, “PDCNNet: An Automatic Framework for the Detection of Parkinson's Disease Using EEG Signals,” IEEE Sens. J., vol. 21, no. 15, pp. 17017–17024, 2021, doi: 10.1109/JSEN.2021.3080135. KhareS. K. BajajV. AcharyaU. R. “PDCNNet: An Automatic Framework for the Detection of Parkinson's Disease Using EEG Signals,” IEEE Sens. J. 21 15 17017 17024 2021 10.1109/JSEN.2021.3080135 Open DOISearch in Google Scholar

D. Gupta, S. Sundaram, A. Khanna, A. Ella Hassanien, and V. H. C. de Albuquerque, “Improved diagnosis of Parkinson's disease using optimized crow search algorithm,” Comput. Electr. Eng., vol. 68, no. April, pp. 412–424, 2018, doi: 10.1016/j.compeleceng.2018.04.014. GuptaD. SundaramS. KhannaA. Ella HassanienA. de AlbuquerqueV. H. C. “Improved diagnosis of Parkinson's disease using optimized crow search algorithm,” Comput. Electr. Eng. 68 April 412 424 2018 10.1016/j.compeleceng.2018.04.014 Open DOISearch in Google Scholar

A. Naseer, M. Rani, S. Naz, M. I. Razzak, M. Imran, and G. Xu, “Refining Parkinson's neurological disorder identification through deep transfer learning,” Neural Comput. Appl., vol. 32, no. 3, pp. 839–854, 2020, doi: 10.1007/s00521-019-04069-0. NaseerA. RaniM. NazS. RazzakM. I. ImranM. XuG. “Refining Parkinson's neurological disorder identification through deep transfer learning,” Neural Comput. Appl. 32 3 839 854 2020 10.1007/s00521-019-04069-0 Open DOISearch in Google Scholar

B. Jin, Y. Qu, L. Zhang, and Z. Gao, “Diagnosing parkinson disease through facial expression recognition: Video analysis,” J. Med. Internet Res., vol. 22, no. 7, pp. 1–12, 2020, doi: 10.2196/18697. JinB. QuY. ZhangL. GaoZ. “Diagnosing parkinson disease through facial expression recognition: Video analysis,” J. Med. Internet Res. 22 7 1 12 2020 10.2196/18697 Open DOISearch in Google Scholar

B. Sonawane and P. Sharma, “Review of automated emotion-based quantification of facial expression in Parkinson's patients,” Vis. Comput., vol. 37, no. 5, pp. 1151–1167, May 2021, doi: 10.1007/s00371-020-01859-9. SonawaneB. SharmaP. “Review of automated emotion-based quantification of facial expression in Parkinson's patients,” Vis. Comput. 37 5 1151 1167 May 2021 10.1007/s00371-020-01859-9 Open DOISearch in Google Scholar

I. Adjabi, A. Ouahabi, A. Benzaoui, and A. Taleb-Ahmed, “Past, Present, and Future of Face Recognition: A Review,” Electronics, vol. 9, p. 1188, 2020, doi: 10.3390/electronics9081188. AdjabiI. OuahabiA. BenzaouiA. Taleb-AhmedA. “Past, Present, and Future of Face Recognition: A Review,” Electronics 9 1188 2020 10.3390/electronics9081188 Open DOISearch in Google Scholar

D. Berg et al., “Prodromal Parkinson disease subtypes — key to understanding heterogeneity,” Nature Reviews Neurology, vol. 17, no. 6. Nature Research, pp. 349–361, Jun. 01, 2021. doi: 10.1038/s41582-021-00486-9. BergD. “Prodromal Parkinson disease subtypes — key to understanding heterogeneity,” Nature Reviews Neurology 17 6 Nature Research, 349 361 Jun. 01 2021 10.1038/s41582-021-00486-9 Open DOISearch in Google Scholar

P. Chakrabarti, A. Mozhdehfarahbakhsh, S. Chitsazian, T. Chakrabarti, B. Kateb, and M. Nami, “An MRI-based Deep Learning Model to Predict Parkinson's Disease Stages,” 2021, doi: 10.1101/2021.02.19.21252081. ChakrabartiP. MozhdehfarahbakhshA. ChitsazianS. ChakrabartiT. KatebB. NamiM. “An MRI-based Deep Learning Model to Predict Parkinson's Disease Stages,” 2021 10.1101/2021.02.19.21252081 Open DOISearch in Google Scholar

M. S. R. Sajal, M. T. Ehsan, R. Vaidyanathan, S. Wang, T. Aziz, and K. A. Al Mamun, “Telemonitoring Parkinson's disease using machine learning by combining tremor and voice analysis,” Brain Informatics, vol. 7, no. 1, pp. 1–11, 2020, doi: 10.1186/s40708-020-00113-1. SajalM. S. R. EhsanM. T. VaidyanathanR. WangS. AzizT. Al MamunK. A. “Telemonitoring Parkinson's disease using machine learning by combining tremor and voice analysis,” Brain Informatics 7 1 1 11 2020 10.1186/s40708-020-00113-1 Open DOISearch in Google Scholar

M. Raza, M. Awais, N. Singh, M. Imran, and S. Hussain, “Intelligent IoT Framework for Indoor Healthcare Monitoring of Parkinson's Disease Patient,” IEEE J. Sel. Areas Commun., vol. 39, no. 2, pp. 593–602, 2021, doi: 10.1109/JSAC.2020.3021571. RazaM. AwaisM. SinghN. ImranM. HussainS. “Intelligent IoT Framework for Indoor Healthcare Monitoring of Parkinson's Disease Patient,” IEEE J. Sel. Areas Commun. 39 2 593 602 2021 10.1109/JSAC.2020.3021571 Open DOISearch in Google Scholar

M. Nilashi et al., “Remote tracking of Parkinson's Disease progression using ensembles of Deep Belief Network and Self-Organizing Map,” Expert Syst. Appl., vol. 159, p. 113562, 2020, doi: 10.1016/j.eswa.2020.113562. NilashiM. “Remote tracking of Parkinson's Disease progression using ensembles of Deep Belief Network and Self-Organizing Map,” Expert Syst. Appl. 159 113562 2020 10.1016/j.eswa.2020.113562 Open DOISearch in Google Scholar

U. Kleinholdermann, M. Wullstein, and D. Pedrosa, “Prediction of motor Unified Parkinson's Disease Rating Scale scores in patients with Parkinson's disease using surface electromyography,” Clin. Neurophysiol., vol. 132, no. 7, pp. 1708–1713, 2021, doi: 10.1016/j.clinph.2021.01.031. KleinholdermannU. WullsteinM. PedrosaD. “Prediction of motor Unified Parkinson's Disease Rating Scale scores in patients with Parkinson's disease using surface electromyography,” Clin. Neurophysiol. 132 7 1708 1713 2021 10.1016/j.clinph.2021.01.031 Open DOISearch in Google Scholar

M. D. Hssayeni, J. Jimenez-Shahed, M. A. Burack, and B. Ghoraani, “Ensemble deep model for continuous estimation of Unified Parkinson's Disease Rating Scale III,” Biomed. Eng. Online, vol. 20, no. 1, pp. 1–20, 2021, doi: 10.1186/s12938-021-00872-w. HssayeniM. D. Jimenez-ShahedJ. BurackM. A. GhoraaniB. “Ensemble deep model for continuous estimation of Unified Parkinson's Disease Rating Scale III,” Biomed. Eng. Online 20 1 1 20 2021 10.1186/s12938-021-00872-w Open DOISearch in Google Scholar

M. Lu et al., “Quantifying Parkinson's disease motor severity under uncertainty using MDS-UPDRS videos,” Med. Image Anal., vol. 73, Oct. 2021, doi: 10.1016/j.media.2021.102179. LuM. “Quantifying Parkinson's disease motor severity under uncertainty using MDS-UPDRS videos,” Med. Image Anal. 73 Oct. 2021 10.1016/j.media.2021.102179 Open DOISearch in Google Scholar

H. Abujrida, E. Agu, and K. Pahlavan, “Machine learning-based motor assessment of Parkinson's disease using postural sway, gait and lifestyle features on crowd-sourced smartphone data,” Biomed. Phys. Eng. Express, vol. 6, no. 3, 2020, doi: 10.1088/2057-1976/ab39a8. AbujridaH. AguE. PahlavanK. “Machine learning-based motor assessment of Parkinson's disease using postural sway, gait and lifestyle features on crowd-sourced smartphone data,” Biomed. Phys. Eng. Express 6 3 2020 10.1088/2057-1976/ab39a8 Open DOISearch in Google Scholar

N. Li, F. Tian, X. Fan, Y. Zhu, H. Wang, and G. Dai, “Monitoring motor symptoms in Parkinson's disease via instrumenting daily artifacts with inertia sensors,” CCF Trans. Pervasive Comput. Interact., vol. 1, no. 2, pp. 100–113, 2019, doi: 10.1007/s42486-019-00008-z. LiN. TianF. FanX. ZhuY. WangH. DaiG. “Monitoring motor symptoms in Parkinson's disease via instrumenting daily artifacts with inertia sensors,” CCF Trans. Pervasive Comput. Interact. 1 2 100 113 2019 10.1007/s42486-019-00008-z Open DOISearch in Google Scholar

D. Buongiorno, I. Bortone, G. D. Cascarano, G. F. Trotta, A. Brunetti, and V. Bevilacqua, “A low-cost vision system based on the analysis of motor features for recognition and severity rating of Parkinson's Disease,” BMC Med. Inform. Decis. Mak., vol. 19, no. 9, pp. 1–13, 2019, doi: 10.1186/s12911-019-0987-5. BuongiornoD. BortoneI. CascaranoG. D. TrottaG. F. BrunettiA. BevilacquaV. “A low-cost vision system based on the analysis of motor features for recognition and severity rating of Parkinson's Disease,” BMC Med. Inform. Decis. Mak. 19 9 1 13 2019 10.1186/s12911-019-0987-5 Open DOISearch in Google Scholar

H. Yoon and J. Li, “A Novel Positive Transfer Learning Approach for Telemonitoring of Parkinson's Disease,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 1, pp. 180–191, 2019, doi: 10.1109/TASE.2018.2874233. YoonH. LiJ. “A Novel Positive Transfer Learning Approach for Telemonitoring of Parkinson's Disease,” IEEE Trans. Autom. Sci. Eng. 16 1 180 191 2019 10.1109/TASE.2018.2874233 Open DOISearch in Google Scholar

A. Grammatikopoulou, K. Dimitropoulos, S. Bostantjopoulou, Z. Katsarou, and N. Grammalidis, “Motion Analysis of Parkinson Diseased Patients using a Video Game Approach,” ACM Int. Conf. Proceeding Ser., pp. 523–527, 2019, doi: 10.1145/3316782.3322757. GrammatikopoulouA. DimitropoulosK. BostantjopoulouS. KatsarouZ. GrammalidisN. “Motion Analysis of Parkinson Diseased Patients using a Video Game Approach,” ACM Int. Conf. Proceeding Ser. 523 527 2019 10.1145/3316782.3322757 Open DOISearch in Google Scholar

F. Kitsios, E. Papageorgiou, M. Kamariotou, N. A. Perifanis, and M. A. Talias, “Emotional intelligence with the gender perspective in health organizations managers,” Heliyon, vol. 8, no. 11, 2022, doi: 10.1016/j.heliyon.2022.e11488. KitsiosF. PapageorgiouE. KamariotouM. PerifanisN. A. TaliasM. A. “Emotional intelligence with the gender perspective in health organizations managers,” Heliyon 8 11 2022 10.1016/j.heliyon.2022.e11488 Open DOISearch in Google Scholar

P. J. O'Connor, A. Hill, M. Kaya, and B. Martin, “The measurement of emotional intelligence: A critical review of the literature and recommendations for researchers and practitioners,” Front. Psychol., vol. 10, no. MAY, pp. 0–1, 2019, doi: 10.3389/fpsyg.2019.01116. O'ConnorP. J. HillA. KayaM. MartinB. “The measurement of emotional intelligence: A critical review of the literature and recommendations for researchers and practitioners,” Front. Psychol. 10 MAY 0 1 2019 10.3389/fpsyg.2019.01116 Open DOISearch in Google Scholar

P. A. Pérez-Díaz et al., “Invariance of the Trait Emotional Intelligence Construct Across Clinical Populations and Sociodemographic Variables,” Front. Psychol., vol. 13, no. April, pp. 1–10, 2022, doi: 10.3389/fpsyg.2022.796057. Pérez-DíazP. A. “Invariance of the Trait Emotional Intelligence Construct Across Clinical Populations and Sociodemographic Variables,” Front. Psychol. 13 April 1 10 2022 10.3389/fpsyg.2022.796057 Open DOISearch in Google Scholar

R. Yuvaraj et al., “Detection of emotions in Parkinson's disease using higher order spectral features from brain's electrical activity,” Biomed. Signal Process. Control, vol. 14, no. 1, pp. 108–116, 2014, doi: 10.1016/j.bspc.2014.07.005. YuvarajR. “Detection of emotions in Parkinson's disease using higher order spectral features from brain's electrical activity,” Biomed. Signal Process. Control 14 1 108 116 2014 10.1016/j.bspc.2014.07.005 Open DOISearch in Google Scholar

R. Parameshwara, S. Narayana, M. Murugappan, R. Subramanian, I. Radwan, and R. Goecke, “Automated Parkinson's Disease Detection and Affective Analysis from Emotional EEG Signals,” arX-iv:2202.12936v1, Feb. 2022, [Online]. Available: http://arxiv.org/abs/2202.12936 ParameshwaraR. NarayanaS. MurugappanM. SubramanianR. RadwanI. GoeckeR. “Automated Parkinson's Disease Detection and Affective Analysis from Emotional EEG Signals,” arX-iv:2202.12936v1 Feb. 2022 [Online]. Available: http://arxiv.org/abs/2202.12936 Search in Google Scholar

R. Yuvaraj et al., “On the analysis of EEG power, frequency and asymmetry in Parkinson's disease during emotion processing,” Behav. Brain Funct., vol. 10, no. 1, pp. 1–19, 2014, doi: 10.1186/1744-9081-10-12. YuvarajR. “On the analysis of EEG power, frequency and asymmetry in Parkinson's disease during emotion processing,” Behav. Brain Funct. 10 1 1 19 2014 10.1186/1744-9081-10-12 Open DOISearch in Google Scholar

U. Anusri, G. Dhatchayani, Y. Princely Angelinal, and S. Kamalraj, “An Early Prediction of Parkinson's Disease Using Facial Emotional Recognition,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Jun. 2021. doi: 10.1088/1742-6596/1937/1/012058. AnusriU. DhatchayaniG. Princely AngelinalY. KamalrajS. “An Early Prediction of Parkinson's Disease Using Facial Emotional Recognition,” in Journal of Physics: Conference Series IOP Publishing Ltd Jun. 2021 10.1088/1742-6596/1937/1/012058 Open DOISearch in Google Scholar

E. Pegolo, D. Volpe, A. Cucca, L. Ricciardi, and Z. Sawacha, “Quantitative Evaluation of Hypomimia in Parkinson's Disease: A Face Tracking Approach,” Sensors, vol. 22, no. 4, Feb. 2022, doi: 10.3390/s22041358. PegoloE. VolpeD. CuccaA. RicciardiL. SawachaZ. “Quantitative Evaluation of Hypomimia in Parkinson's Disease: A Face Tracking Approach,” Sensors 22 4 Feb. 2022 10.3390/s22041358 Open DOISearch in Google Scholar

K. Sechidis, R. Fusaroli, J. R. Orozco-Arroyave, D. Wolf, and Y. P. Zhang, “A machine learning perspective on the emotional content of Parkinsonian speech,” Artif. Intell. Med., vol. 115, no. February, p. 102061, 2021, doi: 10.1016/j.artmed.2021.102061. SechidisK. FusaroliR. Orozco-ArroyaveJ. R. WolfD. ZhangY. P. “A machine learning perspective on the emotional content of Parkinsonian speech,” Artif. Intell. Med. 115 February 102061 2021 10.1016/j.artmed.2021.102061 Open DOISearch in Google Scholar

S. Zhao, F. Rudzicz, L. G. Carvalho, C. Márquez-Chin, and S. Livingstone, “Automatic detection of expressed emotion in Parkinson's Disease,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., no. May, pp. 4813–4817, 2014, doi: 10.1109/ICASSP.2014.6854516. ZhaoS. RudziczF. CarvalhoL. G. Márquez-ChinC. LivingstoneS. “Automatic detection of expressed emotion in Parkinson's Disease,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc. May 4813 4817 2014 10.1109/ICASSP.2014.6854516 Open DOISearch in Google Scholar

N. Murad and E. Melamud, “Global patterns of prognostic biomarkers across disease space,” Sci. Rep., vol. 12, no. 1, pp. 1–13, 2022, doi: 10.1038/s41598-022-25209-y. MuradN. MelamudE. “Global patterns of prognostic biomarkers across disease space,” Sci. Rep. 12 1 1 13 2022 10.1038/s41598-022-25209-y Open DOISearch in Google Scholar

K. D. Davis et al., “Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities,” Nat. Rev. Neurol., vol. 16, no. 7, pp. 381–400, 2020, doi: 10.1038/s41582-020-0362-2. DavisK. D. “Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities,” Nat. Rev. Neurol. 16 7 381 400 2020 10.1038/s41582-020-0362-2 Open DOISearch in Google Scholar

L. Max, “UCI Machine Learning Repository: Parkinsons Data Set,” UCI Machine Learning Repository: Parkinsons Data Set, 2008. https://archive.ics.uci.edu/ml/datasets/parkinsons MaxL. “UCI Machine Learning Repository: Parkinsons Data Set,” UCI Machine Learning Repository: Parkinsons Data Set 2008 https://archive.ics.uci.edu/ml/datasets/parkinsons Search in Google Scholar

V. Despotovic, T. Skovranek, and C. Schommer, “Speech Based Estimation of Parkinson's Disease Using Gaussian Processes and Automatic Relevance Determination,” Neurocomputing, vol. 401, pp. 173–181, 2020, doi: 10.1016/j.neucom.2020.03.058. DespotovicV. SkovranekT. SchommerC. “Speech Based Estimation of Parkinson's Disease Using Gaussian Processes and Automatic Relevance Determination,” Neurocomputing 401 173 181 2020 10.1016/j.neucom.2020.03.058 Open DOISearch in Google Scholar

J. F. Daneault et al., “Accelerometer data collected with a minimum set of wearable sensors from subjects with Parkinson's disease,” Sci. Data, vol. 8, no. 1, pp. 1–13, 2021, doi: 10.1038/s41597-021-00830-0. DaneaultJ. F. “Accelerometer data collected with a minimum set of wearable sensors from subjects with Parkinson's disease,” Sci. Data 8 1 1 13 2021 10.1038/s41597-021-00830-0 Open DOISearch in Google Scholar

D. Martinez-Ramirez, M. Rodriguez-Violante, and A. Ramirez-Zamora, “Gait in Parkinson's Disease: PhysioNet,” PhysioBank, vol. 2019. 2019. doi: 10.1155/2019/1962123. Martinez-RamirezD. Rodriguez-ViolanteM. Ramirez-ZamoraA. “Gait in Parkinson's Disease: PhysioNet,” PhysioBank 2019 2019 10.1155/2019/1962123 Open DOISearch in Google Scholar

R. S. Nancy Noella, D. Gupta, and J. Priyadarshini, “Diagnosis of Parkinson's disease using Gait Dynamics and Images,” Procedia Comput. Sci., vol. 165, no. 2019, pp. 428–434, 2019, doi: 10.1016/j.procs.2020.01.002. Nancy NoellaR. S. GuptaD. PriyadarshiniJ. “Diagnosis of Parkinson's disease using Gait Dynamics and Images,” Procedia Comput. Sci. 165 2019 428 434 2019 10.1016/j.procs.2020.01.002 Open DOISearch in Google Scholar

A. Li and C. Li, “Detecting Parkinson's Disease through Gait Measures Using Machine Learning,” Diagnostics, vol. 12, no. 10, pp. 1–9, 2022, doi: 10.3390/diagnostics12102404. LiA. LiC. “Detecting Parkinson's Disease through Gait Measures Using Machine Learning,” Diagnostics 12 10 1 9 2022 10.3390/diagnostics12102404 Open DOISearch in Google Scholar

D. Vimalajeewa, E. Mcdonald, M. Tung, and B. Vidakovic, “Parkinson's Disease Diagnosis with Gait Characteristics Extracted Using Wavelet Transforms,” TechRxiv, pp. 0–9, 2022, doi: 10.36227/techrxiv.21287547.v1. VimalajeewaD. McdonaldE. TungM. VidakovicB. “Parkinson's Disease Diagnosis with Gait Characteristics Extracted Using Wavelet Transforms,” TechRxiv 0 9 2022 10.36227/techrxiv.21287547.v1 Open DOISearch in Google Scholar

M. B. Makarious et al., “Multi-modality machine learning predicting Parkinson's disease,” npj Park. Dis., vol. 8, no. 1, 2022, doi: 10.1038/s41531-022-00288-w. MakariousM. B. “Multi-modality machine learning predicting Parkinson's disease,” npj Park. Dis. 8 1 2022 10.1038/s41531-022-00288-w Open DOISearch in Google Scholar

K. Marek et al., “The Parkinson Progression Marker Initiative (PPMI),” Prog. Neurobiol., vol. 95, no. 80, pp. 678–687, 2011, doi: 10.1016/j.pneurobio.2011.09.005.The. MarekK. “The Parkinson Progression Marker Initiative (PPMI),” Prog. Neurobiol. 95 80 678 687 2011 10.1016/j.pneurobio.2011.09.005.The Open DOISearch in Google Scholar

A. Tsanas, M. Little, P. McSharry, and L. Ramig, “UCI Machine Learning Repository: Parkinsons Telemonitoring Data Set,” UCI Machine Learning Repository, 2009. https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring TsanasA. LittleM. McSharryP. RamigL. “UCI Machine Learning Repository: Parkinsons Telemonitoring Data Set,” UCI Machine Learning Repository 2009 https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring Search in Google Scholar

M. Nilashi, O. Ibrahim, S. Samad, H. Ahmadi, L. Shahmoradi, and E. Akbari, “An analytical method for measuring the Parkinson's disease progression: A case on a Parkinson's telemonitoring dataset,” Meas. J. Int. Meas. Confed., vol. 136, pp. 545–557, 2019, doi: 10.1016/j.measurement.2019.01.014. NilashiM. IbrahimO. SamadS. AhmadiH. ShahmoradiL. AkbariE. “An analytical method for measuring the Parkinson's disease progression: A case on a Parkinson's telemonitoring dataset,” Meas. J. Int. Meas. Confed. 136 545 557 2019 10.1016/j.measurement.2019.01.014 Open DOISearch in Google Scholar

D. Roggen, M. Plotnik, and J. Hausdorff, “Daphnet Freezing of Gait Data Set,” UCI Machine Learning Repository, 2013. https://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait%0Ahttps://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait# RoggenD. PlotnikM. HausdorffJ. “Daphnet Freezing of Gait Data Set,” UCI Machine Learning Repository 2013 https://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait%0Ahttps://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait# Search in Google Scholar

N. Kleanthous, A. J. Hussain, W. Khan, and P. Liatsis, “A new machine learning based approach to predict Freezing of Gait,” Pattern Recognit. Lett., vol. 140, pp. 119–126, 2020, doi: 10.1016/j.patrec.2020.09.011. KleanthousN. HussainA. J. KhanW. LiatsisP. “A new machine learning based approach to predict Freezing of Gait,” Pattern Recognit. Lett. 140 119 126 2020 10.1016/j.patrec.2020.09.011 Open DOISearch in Google Scholar

L. Naranjo, C. J. Pérez, J. Martín, and Y. Campos-Roca, “A two-stage variable selection and classification approach for Parkinson's disease detection by using voice recording replications,” Comput. Methods Programs Biomed., vol. 142, pp. 147–156, 2017, doi: 10.1016/j.cmpb.2017.02.019. NaranjoL. PérezC. J. MartínJ. Campos-RocaY. “A two-stage variable selection and classification approach for Parkinson's disease detection by using voice recording replications,” Comput. Methods Programs Biomed. 142 147 156 2017 10.1016/j.cmpb.2017.02.019 Open DOISearch in Google Scholar

J. Dhar, “An adaptive intelligent diagnostic system to predict early stage of parkinson's disease using two-stage dimension reduction with genetically optimized lightgbm algorithm,” Neural Comput. Appl., vol. 34, no. 6, pp. 4567–4593, 2022, doi: 10.1007/s00521-021-06612-4. DharJ. “An adaptive intelligent diagnostic system to predict early stage of parkinson's disease using two-stage dimension reduction with genetically optimized lightgbm algorithm,” Neural Comput. Appl. 34 6 4567 4593 2022 10.1007/s00521-021-06612-4 Open DOISearch in Google Scholar

B. Erdogdu Sakar et al., “UCI Machine Learning Repository: Parkinson Speech Dataset with Multiple Types of Sound Recordings Data Set,” IEEE Journal of Biomedical and Health Informatics, vol. 17, no. 4. pp. 828–834, 2013. [Online]. Available: https://archive.ics.uci.edu/ml/Parkinson+Speech+Datasett+with++Multiple+Types+of+Sound+Recordings Erdogdu SakarB. “UCI Machine Learning Repository: Parkinson Speech Dataset with Multiple Types of Sound Recordings Data Set,” IEEE Journal of Biomedical and Health Informatics 17 4 828 834 2013 [Online]. Available: https://archive.ics.uci.edu/ml/Parkinson+Speech+Datasett+with++Multiple+Types+of+Sound+Recordings Search in Google Scholar

S. R. Sharma, B. Singh, and M. Kaur, “Classification of Parkinson disease using binary Rao optimization algorithms,” Expert Syst., vol. 38, no. 4, pp. 1–16, 2021, doi: 10.1111/exsy.12674. SharmaS. R. SinghB. KaurM. “Classification of Parkinson disease using binary Rao optimization algorithms,” Expert Syst. 38 4 1 16 2021 10.1111/exsy.12674 Open DOISearch in Google Scholar

C. O. Sakar et al., “A comparative analysis of speech signal processing algorithms for Parkinson's disease classification and the use of the tunable Q-factor wavelet transform,” Appl. Soft Comput. J., vol. 74, pp. 255–263, 2019, doi: 10.1016/j.asoc.2018.10.022. SakarC. O. “A comparative analysis of speech signal processing algorithms for Parkinson's disease classification and the use of the tunable Q-factor wavelet transform,” Appl. Soft Comput. J. 74 255 263 2019 10.1016/j.asoc.2018.10.022 Open DOISearch in Google Scholar

H. Gunduz, “Deep Learning-Based Parkinson's Disease Classification Using Vocal Feature Sets,” IEEE Access, vol. 7, pp. 115540–115551, 2019, doi: 10.1109/ACCESS.2019.2936564. GunduzH. “Deep Learning-Based Parkinson's Disease Classification Using Vocal Feature Sets,” IEEE Access 7 115540 115551 2019 10.1109/ACCESS.2019.2936564 Open DOISearch in Google Scholar

Okan Sakar, G. Serbes, and A. Gunduz, “UCI Machine Learning Repository: Parkinson's Disease Classification Data Set,” UCI Machine Learning Repository. p. 1, 2018. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Disease+Classification SakarOkan SerbesG. GunduzA. “UCI Machine Learning Repository: Parkinson's Disease Classification Data Set,” UCI Machine Learning Repository 1 2018 [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Disease+Classification Search in Google Scholar

R. Lamba, T. Gulati, and A. Jain, “A Hybrid Feature Selection Approach for Parkinson's Detection Based on Mutual Information Gain and Recursive Feature Elimination,” Arab. J. Sci. Eng., vol. 47, no. 8, pp. 10263–10276, 2022, doi: 10.1007/s13369-021-06544-0. LambaR. GulatiT. JainA. “A Hybrid Feature Selection Approach for Parkinson's Detection Based on Mutual Information Gain and Recursive Feature Elimination,” Arab. J. Sci. Eng. 47 8 10263 10276 2022 10.1007/s13369-021-06544-0 Open DOISearch in Google Scholar

M. E. Isenkul and B. Erdogdu Sakar, “UCI Machine Learning Repository: Parkinson Disease Spiral Drawings Using Digitized Graphics Tablet Data Set,” Dataset. 2017. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Parkinson+Disease+Spiral+Drawings+Using+Digitized+Graphics+tablet%0Ahttps://archive.ics.uci.edu/ml/datasets/Parkinson+Disease+Spiral+Drawings+Using+Digitized+Graphics+Tablet IsenkulM. E. Erdogdu SakarB. “UCI Machine Learning Repository: Parkinson Disease Spiral Drawings Using Digitized Graphics Tablet Data Set,” Dataset 2017 [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Parkinson+Disease+Spiral+Drawings+Using+Digitized+Graphics+tablet%0Ahttps://archive.ics.uci.edu/ml/datasets/Parkinson+Disease+Spiral+Drawings+Using+Digitized+Graphics+Tablet Search in Google Scholar

M. Gil-Martín, J. M. Montero, and R. San-Segundo, “Parkinson's disease detection from drawing movements using convolutional neural networks,” Electron., vol. 8, no. 8, 2019, doi: 10.3390/electronics8080907. Gil-MartínM. MonteroJ. M. San-SegundoR. “Parkinson's disease detection from drawing movements using convolutional neural networks,” Electron. 8 8 2019 10.3390/electronics8080907 Open DOISearch in Google Scholar

C. R. Pereira, S. A. T. Weber, C. Hook, G. H. Rosa, and J. P. Papa, “NewHandPD dataset,” Deep Learning-aided Parkinson's Disease Diagnosis from Handwritten Dynamics, 2016. https://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/ PereiraC. R. WeberS. A. T. HookC. RosaG. H. PapaJ. P. “NewHandPD dataset,” Deep Learning-aided Parkinson's Disease Diagnosis from Handwritten Dynamics 2016 https://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/ Search in Google Scholar

S. Xu and Z. Pan, “A novel ensemble of random forest for assisting diagnosis of Parkinson's disease on small handwritten dynamics dataset,” Int. J. Med. Inform., vol. 144, p. 104283, 2020, doi: 10.1016/j.ijmedinf.2020.104283. XuS. PanZ. “A novel ensemble of random forest for assisting diagnosis of Parkinson's disease on small handwritten dynamics dataset,” Int. J. Med. Inform. 144 104283 2020 10.1016/j.ijmedinf.2020.104283 Open DOISearch in Google Scholar

M. Hireš, M. Gazda, P. Drotár, N. D. Pah, M. A. Motin, and D. K. Kumar, “Convolutional neural network ensemble for Parkinson's disease detection from voice recordings,” Comput. Biol. Med., vol. 141, no. August 2021, 2022, doi: 10.1016/j.compbiomed.2021.105021. HirešM. GazdaM. DrotárP. PahN. D. MotinM. A. KumarD. K. “Convolutional neural network ensemble for Parkinson's disease detection from voice recordings,” Comput. Biol. Med. 141 no. August 2021, 2022 10.1016/j.compbiomed.2021.105021 Open DOISearch in Google Scholar

F. Amato, L. Borzì, G. Olmo, J. Rafael, and O. Arroyave, “An algorithm for Parkinson's disease speech classification based on isolated words analysis,” Heal. Inf. Sci. Syst., vol. 9, no. 1, pp. 1–15, 2021, doi: 10.1007/s13755-021-00162-8. AmatoF. BorzìL. OlmoG. RafaelJ. ArroyaveO. “An algorithm for Parkinson's disease speech classification based on isolated words analysis,” Heal. Inf. Sci. Syst. 9 1 1 15 2021 10.1007/s13755-021-00162-8 Open DOISearch in Google Scholar

Thanos Tagaris, “The NTUA Parkinson's Dataset,” Artificial Intelligence and Learning Systems Laboratory, 2020. https://github.com/ails-lab/ntua-parkinson-dataset (accessed Jan. 06, 2023). Thanos Tagaris “The NTUA Parkinson's Dataset,” Artificial Intelligence and Learning Systems Laboratory 2020 https://github.com/ails-lab/ntua-parkinson-dataset (accessed Jan. 06, 2023). Search in Google Scholar

L. Moro-Velazquez et al., “A forced gaussians based methodology for the differential evaluation of Parkinson's Disease by means of speech processing,” Biomed. Signal Process. Control, vol. 48, pp. 205–220, 2019, doi: 10.1016/j.bspc.2018.10.020. Moro-VelazquezL. “A forced gaussians based methodology for the differential evaluation of Parkinson's Disease by means of speech processing,” Biomed. Signal Process. Control 48 205 220 2019 10.1016/j.bspc.2018.10.020 Open DOISearch in Google Scholar

L. Moro-Velazquez, J. A. Gomez-Garcia, J. D. Arias-Londoño, N. Dehak, and J. I. Godino-Llorente, “Advances in Parkinson's Disease detection and assessment using voice and speech: A review of the articulatory and phonatory aspects,” Biomed. Signal Process. Control, vol. 66, no. May 2020, 2021, doi: 10.1016/j.bspc.2021.102418. Moro-VelazquezL. Gomez-GarciaJ. A. Arias-LondoñoJ. D. DehakN. Godino-LlorenteJ. I. “Advances in Parkinson's Disease detection and assessment using voice and speech: A review of the articulatory and phonatory aspects,” Biomed. Signal Process. Control 66 no. May 2020, 2021 10.1016/j.bspc.2021.102418 Open DOISearch in Google Scholar

L. Moro-Velazquez et al., “Phonetic relevance and phonemic grouping of speech in the automatic detection of Parkinson's Disease,” Sci. Rep., vol. 9, no. 1, pp. 1–16, 2019, doi: 10.1038/s41598-019-55271-y. Moro-VelazquezL. “Phonetic relevance and phonemic grouping of speech in the automatic detection of Parkinson's Disease,” Sci. Rep. 9 1 1 16 2019 10.1038/s41598-019-55271-y Open DOISearch in Google Scholar

K. W. Russell A. Poldrack, Krzysztof J. Gorgolewski et al., “Open fMRI – Sharing brain MRI data,” The Open Source Imaging Initiative, 2016. https://www.opensourceimaging.org/project/open-fmri-brain-mri-data-sharing-platform/ RussellK. W. PoldrackA. GorgolewskiKrzysztof J. “Open fMRI – Sharing brain MRI data,” The Open Source Imaging Initiative 2016 https://www.opensourceimaging.org/project/open-fmri-brain-mri-data-sharing-platform/ Search in Google Scholar

R. A. Poldrack and K. J. Gorgolewski, “OpenfMRI: Open sharing of task fMRI data,” Neuroimage, vol. 144, pp. 259–261, 2017, doi: 10.1016/j.neuroimage.2015.05.073. PoldrackR. A. GorgolewskiK. J. “OpenfMRI: Open sharing of task fMRI data,” Neuroimage 144 259 261 2017 10.1016/j.neuroimage.2015.05.073 Open DOISearch in Google Scholar

K. D. C. W. S. M. X. C. G. T. S. S. E. R. D. G. S. Jamie L. Adams, “PD-BioStampRC21: Parkinson's Disease Accelerometry Dataset from Five Wearable Sensor Study,” IEEE Dataport. 2020. K. D. C. W. S. M. X. C. G. T. S. S. E. R. D. G. S. Jamie L. Adams “PD-BioStampRC21: Parkinson's Disease Accelerometry Dataset from Five Wearable Sensor Study,” IEEE Dataport 2020 Search in Google Scholar

J. L. Adams et al., “A real-world study of wearable sensors in Parkinson's disease,” npj Park. Dis., vol. 7, no. 1, pp. 1–8, 2021, doi: 10.1038/s41531-021-00248-w. AdamsJ. L. “A real-world study of wearable sensors in Parkinson's disease,” npj Park. Dis. 7 1 1 8 2021 10.1038/s41531-021-00248-w Open DOISearch in Google Scholar

G. Dimauro, V. Di Nicola, V. Bevilacqua, D. Caivano, and F. Girardi, “Assessment of speech intelligibility in Parkinson's disease using a speech-to-text system,” IEEE Access, vol. 5, pp. 22199–22208, 2017, doi: 10.1109/ACCESS.2017.2762475. DimauroG. Di NicolaV. BevilacquaV. CaivanoD. GirardiF. “Assessment of speech intelligibility in Parkinson's disease using a speech-to-text system,” IEEE Access 5 22199 22208 2017 10.1109/ACCESS.2017.2762475 Open DOISearch in Google Scholar

GiovanniDimauro, “Italian Parkinson's Voice and Speech,” IEEE DataPort, 2022. https://ieee-dataport.org/open-access/italian-parkinsons-voice-and-speech GiovanniDimauro “Italian Parkinson's Voice and Speech,” IEEE DataPort 2022 https://ieee-dataport.org/open-access/italian-parkinsons-voice-and-speech Search in Google Scholar

P. Klinton Amaladass, M. S. P. Subathra, S. Jeba Priya, and M. Sivakumar, “Enhanced Local Pattern Transformation Based Feature Extraction for Identification of Parkinson's Disease Using Gait Signals,” SN Comput. Sci., vol. 4, no. 2, 2023, doi: 10.1007/s42979-022-01603-1. Klinton AmaladassP. SubathraM. S. P. Jeba PriyaS. SivakumarM. “Enhanced Local Pattern Transformation Based Feature Extraction for Identification of Parkinson's Disease Using Gait Signals,” SN Comput. Sci. 4 2 2023 10.1007/s42979-022-01603-1 Open DOISearch in Google Scholar

D. J. M. Hausdorff, “Gait in Parkinson's Disease,” PhysioNet, 2008. HausdorffD. J. M. “Gait in Parkinson's Disease,” PhysioNet 2008 Search in Google Scholar

M. Arafe, “GitHub - mohanadarafe_Neurocon,” NEUROCON project, UEFISCDI, 2012. https://github.com/mohanadarafe/Neurocon ArafeM. “GitHub - mohanadarafe_Neurocon,” NEUROCON project, UEFISCDI 2012 https://github.com/mohanadarafe/Neurocon Search in Google Scholar

L. Badea, M. Onu, T. Wu, A. Roceanu, and O. Bajenaru, “Exploring the reproducibility of functional connectivity alterations in Parkinson's disease,” PLoS One, vol. 12, no. 11, pp. 1–21, 2017, doi: 10.1371/journal.pone.0188196. BadeaL. OnuM. WuT. RoceanuA. BajenaruO. “Exploring the reproducibility of functional connectivity alterations in Parkinson's disease,” PLoS One 12 11 1 21 2017 10.1371/journal.pone.0188196 Open DOISearch in Google Scholar

A. Ibrahim, Y. Zhou, M. E. Jenkins, M. D. Naish, and A. L. Trejos, “Parkinson's Tremor Onset Detection and Active Tremor Classification Using a Multilayer Perceptron,” Can. Conf. Electr. Comput. Eng., vol. 2020-Augus, pp. 4–7, 2020, doi: 10.1109/CCECE47787.2020.9255672. IbrahimA. ZhouY. JenkinsM. E. NaishM. D. TrejosA. L. “Parkinson's Tremor Onset Detection and Active Tremor Classification Using a Multilayer Perceptron,” Can. Conf. Electr. Comput. Eng. vol. 2020-Augus, 4 7 2020 10.1109/CCECE47787.2020.9255672 Open DOISearch in Google Scholar

T. Tuncer, S. Dogan, and U. R. Acharya, “Automated detection of Parkinson's disease using minimum average maximum tree and singular value decomposition method with vowels,” Biocybern. Biomed. Eng., pp. 1–11, 2019, doi: https://doi.org/10.1016/j.bbe.2019.05.006. TuncerT. DoganS. AcharyaU. R. “Automated detection of Parkinson's disease using minimum average maximum tree and singular value decomposition method with vowels,” Biocybern. Biomed. Eng. 1 11 2019 doi: https://doi.org/10.1016/j.bbe.2019.05.006. Search in Google Scholar

S. Lee, R. Hussein, and M. J. Mckeown, “A Deep Convolutional-Recurrent Neural Network Architecture for Parkinson's Disease EEG Classification,” IEEE Glob. Conf. Signal Inf. Process., pp. 14–17, 2019. LeeS. HusseinR. MckeownM. J. “A Deep Convolutional-Recurrent Neural Network Architecture for Parkinson's Disease EEG Classification,” IEEE Glob. Conf. Signal Inf. Process. 14 17 2019 Search in Google Scholar

D. Iakovakis et al., “Early Parkinson's Disease Detection via Touchscreen Typing Analysis using Convolutional Neural Networks,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 3535–3538, 2019, doi: 10.1109/EMBC.2019.8857211. IakovakisD. “Early Parkinson's Disease Detection via Touchscreen Typing Analysis using Convolutional Neural Networks,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS 3535 3538 2019 10.1109/EMBC.2019.8857211 Open DOISearch in Google Scholar

D. Iakovakis, S. Hadjidimitriou, V. Charisis, S. Bostantzopoulou, Z. Katsarou, and L. J. Hadjileontiadis, “Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson's disease,” Sci. Rep., vol. 8, no. 1, pp. 1–13, 2018, doi: 10.1038/s41598-018-25999-0. IakovakisD. HadjidimitriouS. CharisisV. BostantzopoulouS. KatsarouZ. HadjileontiadisL. J. “Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson's disease,” Sci. Rep. 8 1 1 13 2018 10.1038/s41598-018-25999-0 Open DOISearch in Google Scholar

X. Shi, T. Wang, L. Wang, H. Liu, and N. Yan, “Hybrid convolutional recurrent neural networks outperform CNN and RNN in Task-state EEG detection for parkinson's disease,” 2019 Asia-Pacific Signal Inf. Process. Assoc. Annu. Summit Conf. APSIPA ASC 2019, no. November, pp. 939–944, 2019, doi: 10.1109/APSIPAASC47483.2019.9023190. ShiX. WangT. WangL. LiuH. YanN. “Hybrid convolutional recurrent neural networks outperform CNN and RNN in Task-state EEG detection for parkinson's disease,” 2019 Asia-Pacific Signal Inf. Process. Assoc. Annu. Summit Conf. APSIPA ASC 2019 November 939 944 2019 10.1109/APSIPAASC47483.2019.9023190 Open DOISearch in Google Scholar

P. Khojasteh, R. Viswanathan, B. Aliahmad, S. Ragnav, P. Zham, and D. K. Kumar, “Parkinson's disease diagnosis based on multivariate deep features of speech signal,” 2018 IEEE Life Sci. Conf. LSC 2018, pp. 187–190, 2018, doi: 10.1109/LSC.2018.8572136. KhojastehP. ViswanathanR. AliahmadB. RagnavS. ZhamP. KumarD. K. “Parkinson's disease diagnosis based on multivariate deep features of speech signal,” 2018 IEEE Life Sci. Conf. LSC 2018 187 190 2018 10.1109/LSC.2018.8572136 Open DOISearch in Google Scholar

T. A. A. Abdullah, Z. Mohd Soperi Mohd, and W. Ali, “A Review of Interpretable ML in Healthcare: Taxonomy, Applications, Challenges, and Future Directions,” Symmetry 2021, vol. 13, pp. 1–28, 2021. AbdullahT. A. A. Mohd Soperi MohdZ. AliW. “A Review of Interpretable ML in Healthcare: Taxonomy, Applications, Challenges, and Future Directions,” Symmetry 2021 13 1 28 2021 Search in Google Scholar

D. Stripelis et al., “Secure neuroimaging analysis using federated learning with homomorphic encryption,” SPIE Proc., vol. 12088, p. 44, 2021, doi: 10.1117/12.2606256. StripelisD. “Secure neuroimaging analysis using federated learning with homomorphic encryption,” SPIE Proc. 12088 44 2021 10.1117/12.2606256 Open DOISearch in Google Scholar

Prayitno et al., “A systematic review of federated learning in the healthcare area: From the perspective of data properties and applications,” Appl. Sci., vol. 11, no. 23, 2021, doi: 10.3390/app112311191. Prayitno “A systematic review of federated learning in the healthcare area: From the perspective of data properties and applications,” Appl. Sci. 11 23 2021 10.3390/app112311191 Open DOISearch in Google Scholar

S. I. Manzoor, S. Jain, and Y. Singh, “Federated Learning based Privacy Ensured Sensor Communication in IoT Networks: A Taxonomy, Threats and Attacks,” IEEE Access, vol. 4, pp. 1–31, 2023. ManzoorS. I. JainS. SinghY. “Federated Learning based Privacy Ensured Sensor Communication in IoT Networks: A Taxonomy, Threats and Attacks,” IEEE Access 4 1 31 2023 Search in Google Scholar

G. Mattavelli et al., “Facial expressions recognition and discrimination in Parkinson's disease,” J. Neuropsychol., vol. 15, no. 1, pp. 46–68, 2021, doi: 10.1111/jnp.12209. MattavelliG. “Facial expressions recognition and discrimination in Parkinson's disease,” J. Neuropsychol. 15 1 46 68 2021 10.1111/jnp.12209 Open DOISearch in Google Scholar

Y. Liu et al., “Vision-Based Method for Automatic Quantification of Parkinsonian Bradykinesia,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 10, pp. 1952–1961, 2019, doi: 10.1109/TNSRE.2019.2939596. LiuY. “Vision-Based Method for Automatic Quantification of Parkinsonian Bradykinesia,” IEEE Trans. Neural Syst. Rehabil. Eng. 27 10 1952 1961 2019 10.1109/TNSRE.2019.2939596 Open DOISearch in Google Scholar

I. G. Tsoulos, G. Mitsi, A. Stavrakoudis, and S. Papapetropoulos, “Application of machine learning in a parkinson's disease digital biomarker dataset using Neural Network Construction (NNC) methodology discriminates patient motor status,” Front. ICT, vol. 6, no. MAY, pp. 1–7, 2019, doi: 10.3389/fict.2019.00010. TsoulosI. G. MitsiG. StavrakoudisA. PapapetropoulosS. “Application of machine learning in a parkinson's disease digital biomarker dataset using Neural Network Construction (NNC) methodology discriminates patient motor status,” Front. ICT 6 MAY 1 7 2019 10.3389/fict.2019.00010 Open DOISearch in Google Scholar

S. T. and N. K. P. Bhattacharya, S. Tanwar, U. Bodkhe, “BinDaaS_Blockchain-Based Deep-Learning as-a-Service in Healthcare 4,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1242–1255, 2021, doi: 10.1109/TNSE.2019.2961932. S. T. and N. K. P. Bhattacharya TanwarS. BodkheU. “BinDaaS_Blockchain-Based Deep-Learning as-a-Service in Healthcare 4,” IEEE Trans. Netw. Sci. Eng. 8 2 1242 1255 2021 10.1109/TNSE.2019.2961932 Open DOISearch in Google Scholar

eISSN:
1178-5608
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Engineering, Introductions and Overviews, other