Accès libre

Real-Time Extraction of News Events Based on BERT Model

 et   
30 sept. 2024
À propos de cet article

Citez
Télécharger la couverture

Figure 1.

Event Extraction Process Map
Event Extraction Process Map

Figure 2.

Pre-training and Fine-Tune process
Pre-training and Fine-Tune process

Figure 3.

Graph structure of CRFs for linear chain conditional random fields
Graph structure of CRFs for linear chain conditional random fields

Figure 4.

Extracted event output structure, including event types and argument roles
Extracted event output structure, including event types and argument roles

Figure 5.

Comparison of P-value, R-value and F1-value of LSTM, BiLSTM and BERT-CRF models. P for Precision, R for Recall
Comparison of P-value, R-value and F1-value of LSTM, BiLSTM and BERT-CRF models. P for Precision, R for Recall

Figure 6.

Comparison of P-value, R-value and F1-value of BERT, RoBERTa and ALBERT models Comparison of P, R and F1 values. P for Precision, R for Recall
Comparison of P-value, R-value and F1-value of BERT, RoBERTa and ALBERT models Comparison of P, R and F1 values. P for Precision, R for Recall

Experimental Results I

Module P R F1
LSTM 34.2% 40.6% 37.1%
BiLSTM 58.1% 56.2% 57.1%
BERT-CRF 76.5% 76.9% 76.7%

Experimental Results II

Module P R F1
BERT 76.50% 76.90% 76.70%
RoBERTa 77.60% 77.10% 77.30%
ALBERT 78.10% 77.30% 77.70%
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Informatique, Informatique, autres