Accès libre

Evaluation of the antibacterial activity of essential oil of Laurus nobilis against Pseudomonas syringae pv. phaseolicola and potential biocidal action

À propos de cet article

Citez

Arnold, D.L., Lovell, H.C., Jackson, R.W. and Mansfield, J.W. 2011. Pseudomonas syringae pv. phase-olicola: from ‘has bean’ to supermodel. Molecular Plant Pathology, 12: 617–627.10.1111/j.1364-3703.2010.00697.x Search in Google Scholar

Bennadja, S. Tlili-Ait-kaki, Y. Djahoudi, A. Hadef, Y. Chefrou, A. 2013. Antibiotic activity of the essential oil of laurel (Laurus nobilis L.) on eight bacterial strains. Journal of Life Sciences, 7: 814–819. Search in Google Scholar

Bouzouita, N., Nafti, A., Chaabouni, M.M., Lognay, G.C., Marlier, M., Zghoulli, S. and Thonart, P. 2001. Chemical compositions of Laurus nobilis oil from Tunisia. Journal of Essential Oil Research, 13: 116–117.10.1080/10412905.2001.9699631 Search in Google Scholar

Bozkurt, A., Soylu, S., Kara, M. and Soylu, E. 2020. Chemical composition and antibacterial activity of essential oils isolated from medicinal plants against gall forming plant pathogenic bacterial disease agents. KSU Journal of Agriculture and Nature, 23: 1474-1482.10.18016/ksutarimdoga.vi.723544 Search in Google Scholar

Chiller, K., Selkin, B.A. and Murakawa, G.J. 2001. Skin microflora and bacterial infections of the skin. Journal of Investigative Dermatology Symposium Proceedings, 6: 170–174.10.1046/j.0022-202x.2001.00043.x Search in Google Scholar

Chouhan, S., Sharma, K. and Guleria, S. 2017. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines (Basel), 84(3): 58.10.3390/medicines4030058562239328930272 Search in Google Scholar

Clinical and Laboratory Standards Institute (2015) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard-10th Edition. CLSI document M07-A10. Wayne, PA. Search in Google Scholar

Clinical and Laboratory Standards Institute 2008. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Approved Standard-3rd Edition. CLSI document M27-A3. Wayne, PA. Search in Google Scholar

Della Pepa, T., Elshafie, H. S., Capasso, R., De Feo, V., Camele, I., Nazzaro, F., et al. 2019. Antimicrobial and phytotoxic activity of Origanum heracleoticum and O. majorana essential oils growing in cilento (Southern Italy). Molecules, 24: 1–16.10.3390/molecules24142576 Search in Google Scholar

Dioscurides, 77 AC. 2001. De Materia Medica. Militos Publications, Athens, Greece, ISBN 960-8033-01-02. Search in Google Scholar

Elshafie, H.S. and Camele, I. 2017. An overview of the biological effects of some mediterranean essential oils on human health. BioMed Research International, 2017:9268468.10.1155/2017/9268468 Search in Google Scholar

Flamini, G., Tebano, M. Cioni, P. Ceccarini, L. Simone, S. and Longo, I. 2007. Comparison between the conventional method of extraction of essential oil of Laurus nobilis L. and a novel method which uses microwaves applied in situ, without resorting to an oven. Journal of Chromatography, 1143:36–40.10.1016/j.chroma.2007.01.031 Search in Google Scholar

Georghiou, K. and Delipetrou, P. 2010. Patterns and traits of the endemic plants of Greece. Botanical Journal of the Linnean Society, 162: 130–422.10.1111/j.1095-8339.2010.01025.x Search in Google Scholar

Giesecke, A. 2014. The Mythology of Plants: Botanical Lore from Ancient Greece and Rome. Getty Publications. Search in Google Scholar

Hendry, E.R., Worthington, T., Conway, B.R. and Lambert, P.A. 2009. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and bio-film cultures. Journal of Antimicrobial Chemo-therapy, 64: 1219–1225.10.1093/jac/dkp362 Search in Google Scholar

Horváth, G. and Ács, K. 2015. Essential oils in the treatment of respiratory tract diseases highlighting their role in bacterial infections and their anti-inflammatory action: A review. Flavour and Fragrance Journal, 30: 331–341. Huergo, H. and Retamar, J. 1978 El aceite esencial de bay (Laurus nobilis L). Rivista Italiana EPPOS, 60: 635-637.10.1002/ffj.3252 Search in Google Scholar

Hussein, R.A. and El-Anssary, A.A. 2018. Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. Herbal Medicine, IntechOpen, London. 10.5772/intechopen.76139. Search in Google Scholar

Juergensmeyer, M.A., Nelson, E.S. and Juergensmeye, E.A. 2007. Shaking alone, without concurrent aeration, affects the growth characteristics of Escherichia coli. Letters in Applied Microbiology, 45:179–183.10.1111/j.1472-765X.2007.02172.x17651215 Search in Google Scholar

Kavanaugh, N.L and Ribbeck, K. 2012. Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Applied and Environmental Microbiology, 78: 4057–4061.10.1128/AEM.07499-11 Search in Google Scholar

Kilic, A., Kollmannsberger, H. and Nitz, S. 2005. Glycosidically bound volatiles and flavor precursors in Laurus nobilis L. Journal of Agricultural and Food Chemistry, 53: 2231–2235.10.1021/jf040373+ Search in Google Scholar

Kupeli, E., Orhan, I. and Yesilada, E. 2007. Evaluation of some plants used in turkish folk medicine for their anti-inflammatory and antinociceptive activities. Journal of Pharmaceutical Biology, 45(7): 547–555.10.1080/13880200701498895 Search in Google Scholar

Lamichhane, J.R., Messéan, A. and Morris, C.E. 2015. Insights into epidemiology and control of diseases of annual plants caused by the Pseudomonas syringae species complex. Journal of General Plant Pathology, 81: 331–350.10.1007/s10327-015-0605-z Search in Google Scholar

Mamoucha, S., Tsafantakis, N., Fokialakis, N. and Christodoulakis, N.S. 2018. A two-season impact study on Globularia alypum: adaptive leaf structures and secondary metabolite variations. Plant Biosystems, 152(5): 1118–1127.10.1080/11263504.2017.1418449 Search in Google Scholar

Moghtader, M. and Farahmand, A. 2013. Evaluation of the antibacterial effects of essential oil from the leaves of Laurus nobilis L. in Kerman Province. Journal of Microbiology and Antimicrobials, 5: 13–17.10.5897/JMA2012.0233 Search in Google Scholar

Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. and Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 853–858.10.1038/35002501 Search in Google Scholar

Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R. and Vincenzo, D.F. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel), 6: 1451–1474.10.3390/ph6121451 Search in Google Scholar

Nemeth, J., Oesch, G. and Kuster, S.P. 2015. Bacterio-static versus bactericidal antibiotics for patients with serious bacterial infections: systematic review and meta-analysis. Journal of Antimicrobial Chemotherapy, 70: 382–395.10.1093/jac/dku379 Search in Google Scholar

Ouibrahim, A., Tlili-Ait-kaki, Y., Bennadja, S., Amrouni, S., Djahoudi, A.G. and Djebar, M.R. 2013. Evaluation of antibacterial activity of Laurus nobilis L., Rosmarinus officinalis L. and Ocimum basilicum L. from Northeast of Algeria. African Journal of Microbiology Research, 7: 4968–4973.10.5897/AJMR2012.2390 Search in Google Scholar

Pino, J. Borges and P. Roncal, E. 1993. The chemical composition of laurel leaf oil from various origins. Molecular Nutrition and Food Research. 37: 592–595.10.1002/food.19930370611 Search in Google Scholar

Politeo, O., Jukic, M. and Milos Ml. 2007. Chemical composition and antioxidant activity of free volatile aglycones from laurel (Laurus nobilis L.) compared to its essential oil. Croatica Chemica Acta, 80: 121–126. Search in Google Scholar

Ramos, C., Teixeira, B., Batista, I., Matos O., Serrano, C., Neng, N.R., Nogueira, J.M.F., Nunes, M.L. and Marques, A. 2012. Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Natural Product Research, 26: 518–29.10.1080/14786419.2010.531478 Search in Google Scholar

Rios, J.L., Recio, M.C. and Villar, A. 1988. Screening methods for natural products with antimicrobial activity: A review of the literature. Journal of Ethnopharmacology, 23: 127–149.10.1016/0378-8741(88)90001-3 Search in Google Scholar

Saab, A.M., Tundis, R., Loizzo, M.R., Lampronti, I., Borgatti, M., Gambari, R., Menichini, F., Esseily, F. and Menichini, F. 2012. Antioxidant and antiproliferative activity of Laurus nobilis L. (Lauraceae) leaves and seeds essential oils against K562 human chronic myelogenous leukaemia cells. Natural Product Research, 26: 1741–1745.10.1080/14786419.2011.60867422017546 Search in Google Scholar

Sahin Basak, S. and Candan, F. 2013 Effect of Laurus nobilis L. essential oil and its main components on α-glucosidase and reactive oxygen species scavenging activity. Iranian Journal of Pharmaceutical Research, 2: 367–379. Search in Google Scholar

Sato, K., Krist, S. and Buchbauer, G. 2007. Antimicrobial effect of vapours of geraniol, (R)-(-)-linalool, terpineol, γ-terpinene and 1,8-cineole on airborne microbes using an airwasher. Flavour and Fragrance Journal, 22: 435–437.10.1002/ffj.1818 Search in Google Scholar

Silva, S.M., Yae Abe, S., Murakami, F.S., Frensch, G., Marques, F.A. and Nakashima, T. 2011. Essential oils from different plant parts of Eucalyptus cinerea F. Muell. ex Benth. (Myrtaceae) as a source of 1,8-cineole and their bioactivities. Pharmaceuticals, 12: 1535–1550.10.3390/ph4121535406010026791641 Search in Google Scholar

Stace, C.A. 2010. New Flora of the British Isles (3rd edition). Cambridge, U.K.: Cambridge University Press. ISBN 9780521707725. Search in Google Scholar

Stefanova, G., Girova, T., Gochev, V., Stoyanova, M., Petkova, Z., Stoyanova, A. and Zheljazkov, V.D. 2020. Comparative study on the chemical composition of laurel (Laurus nobilis L.) leaves from Greece and Georgia and the antibacterial activity of their essential oil. Heliyon, 6:e05491.10.1016/j.heliyon.2020.e05491777054533385077 Search in Google Scholar

Stojković, D., Soković, M., Glamočlija, J., Džamić, A., Ćirić, A., Ristić, M. and Grubišić, D. 2011. Chemical composition and antimicrobial activity of Vitex agnus-castus L. fruits and leaves essential oils. Food Chemistry, 128: 1017–1022.10.1016/j.foodchem.2011.04.007 Search in Google Scholar

Tan, J.B.L. and Lim, Y.Y. 2015. Critical analysis of current methods for assessing the in vitro antioxidant and antibacterial activity of plant extracts. Food Chemistry, 172: 814–822.10.1016/j.foodchem.2014.09.141 Search in Google Scholar

Valgas, C., Machado, S., Elza, S. and Smânia, Jr. 2007. Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology, 38: 369–380.10.1590/S1517-83822007000200034 Search in Google Scholar

Wang, T.H., Hsia, S.M., Wu, C.H., Ko, S.Y., Chen, M.Y., Shih, Y.H. et al. 2016. Evaluation of the antibacterial potential of liquid and vapor phase phenolic essential oil compounds against oral microorganisms. PLoS One, 11: e0163147.10.1371/journal.pone.0163147 Search in Google Scholar

eISSN:
2732-656X
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, Plant Science, Zoology, other