Accès libre

Dissipation of spiroxamine residues in open field cucumber and dietary risk assessment

À propos de cet article

Citez

Agricultural Pesticide Committee (APC). http://www.apc.gov.eg/en/default.aspx. Accessed 1/2/2020. Search in Google Scholar

Baćmaga, M., Kucharski, J., Wyszkowska, J. 2019. Microbiological and biochemical properties of soil polluted with a mixture of spiroxamine, tebuconazole, and triadimenol under the cultivation of Triticum aestivum L. Environmental Monitoring and Assessment 191 doi:10.1007/s10661-019-7539-4.10.1007/s10661-019-7539-4655425431172361 Search in Google Scholar

BCGlobal’s Pesticide Database https://www.bryantchristie.com. e-Pesticide Manual V2.2, 2002. Search in Google Scholar

Buerge, I.J., Krauss, J., López-Cabeza, R., Siegfried, W., Stüssi, M., Wettstein, F.E., Poiger, T. 2016. Stereoselective metabolism of the sterol bio-synthesis inhibitor fungicides fenpropidin, fenpropimorph, and spiroxamine in grapes, sugar beets, and wheat. Journal of Agricultural and Food Chemistry, 64: 5301-5309 doi:10.1021/acs.jafc.6b00919.10.1021/acs.jafc.6b0091927248479 Search in Google Scholar

Codex Pesticides Residues in Food Online Database http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/en/. Search in Google Scholar

Commission E. 2017. Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed. Search in Google Scholar

David, A., Botías, C., Abdul-Sada, A., Goulson, D., Hill, E.M. 2015. Sensitive determination of mixtures of neonicotinoid and fungicide residues in pollen and single bumblebees using a scaled down QuEChERS method for exposure assessment. Analytical and Bioanalytical Chemistry, 407(26): 8151-62. doi: 10.1007/s00216-015-8986-6. Epub 2015 Sep 2. PMID: 26329280.10.1007/s00216-015-8986-626329280 Search in Google Scholar

D’Aquino, S., Barberis, A., Schirra, M., Palma, A. 2011. Curative activity of spiroxamine against green mold in citrus fruit. In: 6th International CIGR Technical Symposium - Towards a Sustainable Food Chain: Food Process, Bioprocessing and Food Quality Management. Search in Google Scholar

EN-15662 2009. Foods of plant origin –Determination of pesticide residues using GC-MS and/or LC-MS/MS following acetonitrile extraction/partitioning and clean-up by dispersive SPE –QuEChERS-method English version of DIN EN 15662: 2009-2002 Search in Google Scholar

European Commision 1995. Storage stability of residue trials 7032-VI-95 rev.5. Search in Google Scholar

European Commission 2013. Commission Regulation (EU) No 283/2013 of 1 March 2013 setting out the data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. Search in Google Scholar

European Commision 2016. Appendix D. Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs. 7525/VI/95-rev.10.3. Search in Google Scholar

European Commission 2016. Regulation (EU) 2016/452 of 29 March 2016 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for captan, propiconazole and spiroxamine in or on certain products. Search in Google Scholar

European Commission 2020. EU Pesticide Database. https://ec.europa.eu/food/plant/pesticides/eupesticides-database/public/?event=homepage&language=EN. Accessed 01/02/2020. Search in Google Scholar

European Food Safety Authority 2010. Conclusion on the peer review of the pesticide risk assessment of the active substance spiroxamine. EFSA Journal, 8: 1719.10.2903/j.efsa.2010.1719 Search in Google Scholar

European Food Safety Authority 2015. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for spiroxamine according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 13(1): 48.10.2903/j.efsa.2015.3992 Search in Google Scholar

European Food Safety Authority 2019. Pesticide Residue Intake Model-EFSA PRIMo revision 3.1 EFSA Supporting Publications 16 doi:10.2903/sp.efsa.2019.EN-1605.10.2903/sp.efsa.2019.EN-1605 Search in Google Scholar

European Food Safety Authority 2020. The 2018 European Union report on pesticide residues in food. EFSA Journal, 18(4): 6057, 103 pp. https://doi.org/10.2903/j.efsa.2020.6057.10.2903/j.efsa.2020.6057744791532874271 Search in Google Scholar

FAO 2009. Submission and evaluation of pesticide residues data for the estimation of maximum residue levels in food and feed : pesticide residues. FAO plant production and protection papers; 197., vol Accessed from http://nla.gov.au/nla.cat-vn4931798. Food and Agriculture Organization of the United Nations, Rome. Search in Google Scholar

FAO/WHO 1988. Guidelines for predicting the dietary intake of pesticide residues Bulletin of the World Health Organization, 66: 429-434. Search in Google Scholar

Ferrer, C., Lozano, A., Agüera, A., Girón, A.J., Fernández-Alba, A.R. 2011. Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. Journal of Chromatography A, 1218:7634-7639 doi:https://doi.org/10.1016/j.chroma.2011.07.033.10.1016/j.chroma.2011.07.03321820661 Search in Google Scholar

FAOSTAT: Food and agriculture data 2015. http://faostat3.fao.org/faostat-gateway/go/to/download/Q/*/E. Search in Google Scholar

Hellenic Ministry of Rural Development and Food Dopppb List of Authorized Plant Protection Products & Biocides. Search in Google Scholar

IEDI 2014. IEDI Calculations for FAO/WHO Acute Dietary Intake Assessment. Search in Google Scholar

International union of pure adn applied chemistry (IUPAC). https://iupac.org. Search in Google Scholar

Kmellár, B., Fodor, P., Pareja, L., Ferrer, C., Martínez-Uroz, M., Valverde, A., Fernandez-Alba, A. 2008. Validation and uncertainty study of a comprehensive list of 160 pesticide residues in multi-class vegetables by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1215: 37-50.10.1016/j.chroma.2008.10.12119036377 Search in Google Scholar

Malhat, F., Saber E.-S., Amin, A.S., Anagnostopoulos, C., Abdelsalam Shokr, S. 2020. Magnitude of picoxystrobin residues in strawberry under Egyptian conditions: dissipation pattern and consumer risk assessment. Food Additives and Contaminants: Part A: 1-10 doi:10.1080/19440049.2020.1736342.10.1080/19440049.2020.173634232186993 Search in Google Scholar

Miller, T.C and Gubler W.D. 2004. Sensitivity of California isolates of Uncinula necator to trifloxystrobin and spiroxamine, and update on triadimefon sensitivity. Plant Disease, 88: 1205-1212 doi:10.1094/PDIS.2004.88.11.1205.10.1094/PDIS.2004.88.11.120530795314 Search in Google Scholar

OECD 2007. Test No 506: Stability of Pesticide Residues in Stored Commodities. Guidelines for the Testing of Chemicals, . Paris. doi:doi:https://doi.org/10.1787/9789264061927-en.10.1787/9789264061927-en Search in Google Scholar

OECD 2009. Test No. 509: Crop Field Trial vol Section 5, . Guidelines for the Testing of Chemicals, . OECD Publishing, Paris. doi:doi:https://doi.org/10.1787/9789264076457-en.10.1787/9789264076457-en Search in Google Scholar

Pereira, V.L., Fernandes, J.O., Cunha, S.C. 2014. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends in Food Science and Technology, 36: 96-136.10.1016/j.tifs.2014.01.005 Search in Google Scholar

Pizzutti, I.R, de Kok, A, Hiemstra, M., Wickert, C., Prestes, O.D. 2009. Method validation and comparison of acetonitrile and acetone extraction for the analysis of 169 pesticides in soya grain by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1216: 4539-4552.10.1016/j.chroma.2009.03.06419375710 Search in Google Scholar

Rosales-Conrado, N. 2009. Hydrolysis study and extraction of spiroxamine from soils of different physico-chemical properties. Chemosphere, 77: 821-828 doi:10.1016/j.chemosphere.2009.07.078.10.1016/j.chemosphere.2009.07.07819733892 Search in Google Scholar

SANTE/11813/2017. 2017. Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed. Search in Google Scholar

Sukul, P., Zuhlke, S., Lamshoft, M., Rosales-Conrado, N., Spiteller, M. 2010. Dissipation and metabolism of (14)C-spiroxamine in soil under laboratory condition. Environmental Pollution, 158: 1542-1550 doi:10.1016/j.envpol.2009.12.025.10.1016/j.envpol.2009.12.02520060629 Search in Google Scholar

Tokatlı, C, Köse, E, Çiçek, A, Emiroğlu, Ö., Tokatlı, C. 2020. Pesticide accumulation in Turkey’s Meriç river basinwater and sediment. Polish Journal of Environmental Studies, 29(1): 1003-1008.10.15244/pjoes/101618 Search in Google Scholar

Tosi, S., Costa, C., Vesco, U., Quaglia, G., Guido, G. 2018. A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Science of the Total Environment, 615: 208-218.10.1016/j.scitotenv.2017.09.226 Search in Google Scholar

Tsiropoulos, N.G., Liapis, K., Likas, D., Miliadis, G. 2005a Determination of Spiroxamine Residues in Grapes, Must, and Wine by Gas Chromatography/Ion Trap-Mass Spectrometry. Journal of AOAC International, 88(6): 1834-1839.10.1093/jaoac/88.6.1834 Search in Google Scholar

Tsiropoulos, N.G, Miliadis, G., Likas, D., Liapis, K. 2005b. Residues of Spiroxamine in Grapes Following Field Application and Their Fate from Malhat et al. Vine to Wine. Journal of Agricultural and Food Chemistry, 53: 10091−10096.10.1021/jf052162q Search in Google Scholar

Wang, Z., Cang, T., Qi, P., Zhao, X., Xu, H., Wang, X., Zhang, H. 2015. Dissipation of four fungicides on greenhouse strawberries and an assessment of their risks. Food Control, 55: 215-220 doi:10.1016/j.foodcont.2015.02.050.10.1016/j.foodcont.2015.02.050 Search in Google Scholar

WHO 2013a. GEMS/food regional diets (regional per-capita consumption of raw and semi-processed agricultural commodities). Search in Google Scholar

WHO 2013b. Global Environment Monitoring System – Food Contamination Monitoring and Assessment Programme (GEMS/Food). Search in Google Scholar

Zhu Xiaodan, Jia Chunhong, Duan Lifang, Zhang Wei, Yu Pingzhong, Ercheng, Z. 2016. Residue behavior and dietary intake risk assessment of three fungicides in tomatoes (Lycopersicon esculentum Mill.) under greenhouse conditions. Regulatory Toxicology and Pharmacology, 81: 284-287.10.1016/j.yrtph.2016.09.015 Search in Google Scholar

eISSN:
2732-656X
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, Plant Science, Zoology, other