Accès libre

Prototype Spatio-temporal Predictive System of pest development of the codling moth, Cydia pomonella, in Kazakhstan

À propos de cet article

Citez

Afonin, A.N., Kazakov, E.E, Milyutina, E.A. unpublished.Search in Google Scholar

Afonin, A.N., Sevryukov, S.Yu., Soloviev, P.A., Luneva, N.N. 2016. Web-GIS for the solution of ecological-geographical analysis and modeling tasks: new opportunities. Vestnik of Saint Petersburg University, Geography and geology, 7(4): 97-111.10.21638/11701/spbu07.2016.408Search in Google Scholar

Benali, A., Carvalho, A. C., Nunes, J. P., Carvalhais, N. and Santos, A. 2012. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sensing of Environment, 124: 108-121.10.1016/j.rse.2012.04.024Search in Google Scholar

Blum M., Lensky, I.M., Nestel, D. 2013. Estimation of olive grove canopy temperature from MODIS thermal imagery is more accurate than interpolation from meteorological stations. Agricultural and Forest Meteorology, 176: 90-93.10.1016/j.agrformet.2013.03.007Search in Google Scholar

Blum, M., Lensky, I.M., Rempoulakis, P., Nestel, D. 2015. Modeling insect population fluctuations with satellite land surface temperature. Ecological Modelling, 311: 39–47.10.1016/j.ecolmodel.2015.05.005Search in Google Scholar

Blum, M., Nestel, D., Cohen, Y., Goldshtein, E., Helman, D., Lensky, I.M. 2018. Predicting Heliothis (Helicoverpa armigera) pest population dynamics with an age-structured insect population model driven by satellite data. Ecological Modelling, 369: 1–12.10.1016/j.ecolmodel.2017.12.019Search in Google Scholar

Boldyrev, M.I. 1981. Short-term forecasting of the development of codling moths. Plant protection, 5: 38-39.Search in Google Scholar

Boldyrev, M.I. 1991. Optimal timing and measures to combat the codling moth. Gardening and viticulture, 6: 13-15.Search in Google Scholar

Bulygina, O.N., Razuvaev, V.N., Aleksandrova, T.M. 2018. Description of the data of air daily temperatures and precipitation at meteorological stations of Russia and neighboring countries. http://meteo.ru/data/162-temperature-precipitationSearch in Google Scholar

Drozda, V.F., Sagitov, A.O. 2017. Evaluation of technologies for protection of apple trees from codling moth. Plant Protection and Quarantine, 5: 17-27.Search in Google Scholar

Eastman, J.R. 2012. IDRISI Selva Tutorial, Manual Version 17.0, Clark University. http://uhulag.mendelu.cz/files/pagesdata/eng/gis/idrisi_selva_tutorial.pdfSearch in Google Scholar

Fu, G., Shen, Z., Zhang, X., Shi, P., Zhang, Y. and Wu, J. 2011. Estimating air temperature of an alpine meadow on the Northern Tibetan Plateau using MODIS land surface temperature. Acta Ecologica Sinica, 31(1): 8-13.10.1016/j.chnaes.2010.11.002Search in Google Scholar

Hill, T. and Lewicki, P. 2007. STATISTICS: Methods and Applications. StatSoft,Tusla, OK, 719 p.Search in Google Scholar

Jones, V.P., Hilton, R., Brunner, J.F., Bentley, W.J., Alston, D.G., Barrett, B. et al. 2013. Predicting the emergence of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae), on a degree-day scale in North America. Pest Management Science, 69: 1393-1398.10.1002/ps.3519Search in Google Scholar

Knight, A.L. 2007. Adjusting the phenology model of codling moth (Lepidoptera: Tortricidae) in Washington state apple orchards. Environmental Entomology, 36: 1485-1493.10.1603/0046-225X(2007)36[1485:ATPMOC]2.0.CO;2Search in Google Scholar

Lensky, I.M. and Dayan, U. 2011. Detection of finescale climatic features from satellites and implications for agricultural planning. Bull. Am. Meteorol. Soc., 92: 1131-1136.10.1175/2011BAMS3160.1Search in Google Scholar

Marques da Silva, J.R., Damásio, C.V., Sousa, A.M.O., Bugalho, L., Pessanha, L., Quaresma P. 2015. Agriculture pest and disease risk maps considering MSG satellite data and land surface temperature. International Journal of Applied Earth Observation and Geoinformation, 38: 40-50.10.1016/j.jag.2014.12.016Search in Google Scholar

Meyer, H., Katurji, M., Appelhans, T., Müller, M.U., Nauss, T., Roudier, P. and Zawar-Reza, P. 2016. Mapping daily air temperature for Antarctica based on MODIS LST. Remote Sensing, 8(9), 732.10.3390/rs8090732Search in Google Scholar

MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. 2017. https://lpdaac.usgs.gov/dataset_discoverySearch in Google Scholar

Pralya, I.I. 2013. Protection of the apple orchard. AMA-Press, Moscow, 91 p.Search in Google Scholar

Riedl, H., Croft, B.A. and Howitt., A.J. 1976. Forecasting codling moth phenology based on pheromone trap catches and physiological-time models. Canadian Entomologist, 108: 449-460.10.4039/Ent108449-5Search in Google Scholar

Sepulcre-Cantó, G., Zarco-Tejada, P.J., Jiménez-Mun oz, J.C., Sobrino, J.A., Soriano, M.A., Fereres, E., Vega, V., Pastor, M. 2007. Monitoring yield and fruit quality parameters in open-canopy tree crops under water stress. Implications for ASTER. Remote Sensing of Environment, 107: 455–470.10.1016/j.rse.2006.09.014Search in Google Scholar

Shen, S. and Leptoukh, G.G. 2011. Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature. Environmental Research Letters, 6(4) 045206.10.1088/1748-9326/6/4/045206Search in Google Scholar

Sona, N.T., Chena, C.F., Chenb, C.R., Changa L.Y., Minh V.Q. 2012. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. International Journal of Applied Earth Observation and Geoinformation, 18: 417–427.10.1016/j.jag.2012.03.014Search in Google Scholar

The Ministry of Agriculture of the Republic of Kazakhstan. 2017. http://mgov.kz/en/napravleniya-razvitiya/fitosanitarnaya-bezopasnost/Search in Google Scholar

Vancutsem, C., Ceccato, P., Dinku, T. and Connor, S.J. 2010. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment, 114(2): 449-465.10.1016/j.rse.2009.10.002Search in Google Scholar

Wan, Z., Hook, S., Hulley, G. 2015. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006 [Data set]. NASA EOSDIS LP DAAC. doi: 10.5067/MODIS/MOD11A2.006Search in Google Scholar

Welch, S., Croft, B.A. Brunner, J.F. and Michels, M. 1978. PETE: An extension phenology modeling system for management of multi-species pest complex. Environmental Entomology, 7: 487-494.10.1093/ee/7.4.487Search in Google Scholar

Williamson, S.N., Hik, D.S., Gamon, J.A., Kavanaugh, J.L. and Flowers, G.E. 2014. Estimating temperature fields from MODIS land surface temperature and air temperature observations in a sub-arctic alpine environment. Remote Sensing, 6(2): 946-963.10.3390/rs6020946Search in Google Scholar

Yones, M.S., Arafat, S., Hadid, A.A., Elrahman H.A. and Dahi, H.F. 2012. Determination of the best timing for control application against cotton leaf worm using remote sensing and geographical information techniques. The Egyptian Journal of Remote Sensing and Space Sciences, 15: 151-160.10.1016/j.ejrs.2012.05.004Search in Google Scholar

Zlatanova, A.A. 1978. Forecast of the emergence of individual phases in codling moth development. Proceedings of the Kazakh RIPPQ, 14: 30-36.Search in Google Scholar

Zlatanova, A.A., Pastukhova, N.P. 1975. Influence of the photoperiod and temperature on codling moth and microdus development during reactivation. Ekologiya, 5: 82-83.Search in Google Scholar

eISSN:
1791-3691
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, Plant Science, Zoology, other