1. bookVolume 16 (2022): Edition 2 (December 2022)
Détails du magazine
License
Format
Magazine
eISSN
1802-1115
Première parution
26 Jun 2014
Périodicité
2 fois par an
Langues
Anglais
Accès libre

Vehicle detection using panchromatic high-resolution satellite images as a support for urban planning. Case study of Prague’s centre

Publié en ligne: 05 Jan 2023
Volume & Edition: Volume 16 (2022) - Edition 2 (December 2022)
Pages: 108 - 119
Reçu: 28 Sep 2022
Accepté: 02 Dec 2022
Détails du magazine
License
Format
Magazine
eISSN
1802-1115
Première parution
26 Jun 2014
Périodicité
2 fois par an
Langues
Anglais

Abburu S, Babu Golla S (2015) Satellite Image Classification Methods and Techniques: A Review. Int. J. Comput. Appl 119: 20–25. doi: 10.5120/21088-3779. Ouvrir le DOISearch in Google Scholar

Alzubaidi L, Zhang J, Humaidi A, Al-Dujaili A, Duan Y, Al- Shamma O, Santamaría J, Fadhel M, Al-Amidie M, Farhan L (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8:53. doi: 10.1186/s40537-021-00444-8.801050633816053 Ouvrir le DOISearch in Google Scholar

Arora N, Kumar Y, Karkra R, Kumar M (2022) Automatic vehicle detection system in different environment conditions using fast R-CNN. Multimed. Tools Appl 81:18715–18735. doi: 10.1007/s11042-022-12347-8. Ouvrir le DOISearch in Google Scholar

Benjdira B, Khursheed T, Koubaa A, Ammar A, Ouni K (2019) Car Detection using Unmanned Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3. In: 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS). Presented at the 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS pp. 1–6. doi: 10.1109/UVS.2019.8658300. Ouvrir le DOISearch in Google Scholar

Bin Zuraimi M, Kamaru Zaman F (2021) Vehicle Detection and Tracking using YOLO and DeepSORT. In: 2021 IEEE 11th IEEE Symposium on Computer Applications Industrial Electronics (ISCAIE). Presented at the 2021 IEEE 11th IEEE Symposium on Computer Applications Industrial Electronics (ISCAIE pp. 23–29. doi: 10.1109/ISCAIE51753.2021.9431784. Ouvrir le DOISearch in Google Scholar

Chen Y, Qin R, Zhang G, Albanwan H (2021) Spatial Temporal Analysis of Traffic Patterns during the COVID-19 Epidemic by Vehicle Detection Using Planet Remote-Sensing Satellite Images. Remote Sens 13:208. doi: 10.3390/rs13020208.10.3390/rs13020208 Search in Google Scholar

Eikvil L, Aurdal L, Koren H (2009) Classification-based vehicle detection in high-resolution satellite images. ISPRS J. Photogramm. Remote Sens 64:65–72. doi: 10.1016/j.isprsjprs.2008.09.005. Ouvrir le DOISearch in Google Scholar

ePojistenicz (2022) The best-selling vehicles in the Czech Republic [WWW Document. Available at: <https://www.epojisteni.cz/aktuality-nejprodavanejsi-znacky-a-modely-aut-v-cesku-ktere-to-jsou/>. Search in Google Scholar

Eslami M, Faez K (2010) Automatic Traffic Monitoring from Satellite Images Using Artificial Immune System. In: RC W, T U, I E, F, (eds.) in. Springer, Hancock, E.R., Wilson, pp. 170–179. doi: 10.1007/978-3-642-14980-1_16. Ouvrir le DOISearch in Google Scholar

Fernandes M, Aguiar F, Silva J, Ferreira M, Pereira J (2014) Optimal attributes for the object based detection of giant reed in riparian habitats: A comparative study between Airborne High Spatial Resolution and WorldView-2 imagery. Int. J. Appl. Earth Obs. Geoinformation 32:79–91.10.1016/j.jag.2014.03.026 Search in Google Scholar

Gavali P, Banu J (2019) Chapter 6 - Deep Convolutional Neural Network for Image Classification on CUDA Platform. In: Ed, (ed.) Sangaiah, A.K. Academic Press, pp. 99–122. doi: 10.1016/B978-0-12-816718-2.00013-0. Ouvrir le DOISearch in Google Scholar

Ghosh R (2021) On-road vehicle detection in varying weather conditions using faster R-CNN with several region proposal networks. Multimed. Tools Appl 80:25985–25999. doi: 10.1007/s11042-021-10954-5. Ouvrir le DOISearch in Google Scholar

Girshick R (2015) Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision pp. 1440–1448.10.1109/ICCV.2015.169 Search in Google Scholar

Girshick R, Donahue J, Darrell T, Malik J (2014) Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition pp. 580–587.10.1109/CVPR.2014.81 Search in Google Scholar

Golej P, Orlikova L, Horak J, Linhartova P, Struhar J (2021) DETECTION OF PEOPLE AND VEHICLES USING VERY HIGH-RESOLUTION SATELLITE IMAGES. In: International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM pp. 283–291. doi: 10.5593/sgem2021/2.1/s10.65. Ouvrir le DOISearch in Google Scholar

Guindon B, Zhang Y, Dillabaugh C (2004) Landsat urban mapping based on a combined spectral–spatial methodology. Remote Sens. Environ 92:218–232. doi: 10.1016/j.rse.2004.06.015. Ouvrir le DOISearch in Google Scholar

Hage I, Hamade R (2016) Geometric-attributes-based segmentation of cortical bone slides using optimized neural networks. J. Bone Miner. Metab 34:251–265. doi: 10.1007/s00774-015-0668-0.26104115 Ouvrir le DOISearch in Google Scholar

Hong S, Shin H, Choi J, Park N (2022) Prediction-based Oneshot Dynamic Parking Pricing. In: Proceedings of the 31st ACM International Conference on Information Knowledge Management. Presented at the CIKM ’22: The 31st ACM International Conference on Information and Knowledge ManagementACM, Atlanta GA USA, pp. 748–757. doi: 10.1145/3511808.3557421. Ouvrir le DOISearch in Google Scholar

Hossain M, Chen D (2019) Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS J. Photogramm. Remote Sens 150:115–134. doi: 10.1016/j.isprsjprs.2019.02.009. Ouvrir le DOISearch in Google Scholar

Hou B, Ren Z, Zhao W, Wu Q, Jiao L (2020) Object Detection in High-Resolution Panchromatic Images Using Deep Models and Spatial Template Matching. IEEE Trans. Geosci. Remote Sens 58:956–970. doi: 10.1109/TGRS.2019.2942103. Ouvrir le DOISearch in Google Scholar

Husain A, Maity T, Yadav R (2020) Vehicle detection in intelligent transport system under a hazy environment: a survey. IET Image Process 14:1–10. doi: 10.1049/iet-ipr.2018.5351. Ouvrir le DOISearch in Google Scholar

Kattenborn T, Leitloff J, Schiefer F, Hinz S (2021) Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens 173:24–49. doi: 10.1016/j.isprsjprs.2020.12.010. Ouvrir le DOISearch in Google Scholar

Keler A, Krisp J, Ding L (2017) Detecting vehicle traffic patterns in urban environments using taxi trajectory intersection points. Geo-Spat. Inf. Sci 20:333–344. doi: 10.1080/10095020.2017.1399672. Ouvrir le DOISearch in Google Scholar

Koga Y, Miyazaki H, Shibasaki R (2018) A CNN-Based Method of Vehicle Detection from Aerial Images Using Hard Example Mining. Remote Sens 10:124. doi: 10.3390/rs10010124. Ouvrir le DOISearch in Google Scholar

Kumar J, Huan T, Li X, Yuan Y (2018) Panchromatic and Multispectral Remote Sensing Image Fusion Using Particle Swarm Optimization of Convolutional Neural Network for Effective Comparison of Bucolic and Farming Region. Search in Google Scholar

Li M, Zang S, Zhang B, Li S, Wu C (2014) A Review of Remote Sensing Image Classification Techniques: the Role of Spatiocontextual Information. Eur. J. Remote Sens 47:389–411. doi: 10.5721/EuJRS20144723. Ouvrir le DOISearch in Google Scholar

Li M, Zhang Z, Lei L, Wang X, Guo X (2020) Agricultural Greenhouses Detection in High-Resolution Satellite Images Based on Convolutional Neural Networks: Comparison of Faster RCNN, YOLO v3 and SSD. Sensors 20:4938. doi: 10.3390/s20174938.750669832878345 Ouvrir le DOISearch in Google Scholar

Ma L, Liu Y, Zhang X, Ye Y, Yin G, Johnson B (2019) Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens 152:166–177. doi: 10.1016/j.isprsjprs.2019.04.015. Ouvrir le DOISearch in Google Scholar

Maity M, Banerjee S, Sinha Chaudhuri S (2021) Faster R-CNN and YOLO based Vehicle detection: A Survey. In: 2021 5th International Conference on Computing Methodologies and Communication (ICCMC). Presented at the 2021 5th International Conference on Computing Methodologies and Communication (ICCMC pp. 1442–1447. doi: 10.1109/ICCMC51019.2021.9418274. Ouvrir le DOISearch in Google Scholar

Merodio Gómez P, Juarez Carrillo O, Kuffer M, Thomson D, Olarte Quiroz J, Villaseñor García E, Vanhuysse S, Abascal A, Oluoch I, Nagenborg M, Persello C, Brito P (2021) Earth Observations and Statistics: Unlocking Sociodemographic Knowledge through the Power of Satellite Images. Sustainability 13:12640. doi: 10.3390/su132212640. Ouvrir le DOISearch in Google Scholar

Phiri D, Morgenroth J (2017) Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens 9:967. doi: 10.3390/rs9090967. Ouvrir le DOISearch in Google Scholar

Prague Geoportal (2021) Prague Geoportal. Search in Google Scholar

Rawat S (2019) Airplanes Detection for Satellite using Faster RCNN [WWW Document. Medium. URL. Available at: <https://towardsdatascience.com/airplanes-detection-for-satellite-using-faster-rcnn-d307d58353f1>. Search in Google Scholar

Seenouvong N, Watchareeruetai U, Nuthong C, Khongsomboon K, Ohnishi N (2016) A computer vision based vehicle detection and counting system. In: 2016 8th International Conference on Knowledge and Smart Technology (KST). Presented at the 2016 8th International Conference on Knowledge and Smart Technology (KST pp. 224–227. doi: 10.1109/KST.2016.7440510. Ouvrir le DOISearch in Google Scholar

Seo YW, Urmson C (2009) Utilizing prior information to enhance self-supervised aerial image analysis for extracting parking lot structures. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. Presented at the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 339–344. doi: 10.1109/IROS.2009.5354405. Ouvrir le DOISearch in Google Scholar

Stauffer C, Grimson W (1999) Adaptive background mixture models for real-time tracking. Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149). Presented at the Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat 2, (PR00149)):246–252. doi: 10.1109/CVPR.1999.784637. Ouvrir le DOISearch in Google Scholar

Stuparu DG, Ciobanu RI, Dobre C (2020) Vehicle Detection in Overhead Satellite Images Using a One-Stage Object Detection Model. Sensors 20:6485. doi: 10.3390/s20226485.769642633202875 Ouvrir le DOISearch in Google Scholar

Tahir A, Munawar H, Akram J, Adil M, Ali S, Kouzani A, Mahmud M (2022) Automatic Target Detection from Satellite Imagery Using Machine Learning. Sensors 22:1147. doi: 10.3390/s22031147.883960335161892 Ouvrir le DOISearch in Google Scholar

Tan Q, Ling J, Hu J, Qin X, Hu J (2020) Vehicle Detection in High Resolution Satellite Remote Sensing Images Based on Deep Learning. IEEE Access 8:153394–153402. doi: 10.1109/ACCESS.2020.3017894. Ouvrir le DOISearch in Google Scholar

Thurnhofer-Hemsi K, López-Rubio E, Molina-Cabello M, Najarian K (2020) Radial basis function kernel optimization for Support Vector Machine classifiers. Search in Google Scholar

Vecer M, Horak J, Golej P, Orlikova L (2021) Segmentation and Object-Based Land Cover Classification of Airborne Images in Kraliky County. In: 2021 8th International Conference on Military Technologies, ICMT 2021 - Proceedings. doi: 10.1109/ICMT52455.2021.9502817. Ouvrir le DOISearch in Google Scholar

Xiao Y, Tian Z, Yu J, Zhang Y, Liu S, Du S, Lan X (2020) A review of object detection based on deep learning. Multimed. Tools Appl 79:23729–23791. doi: 10.1007/s11042-020-08976-6. Ouvrir le DOISearch in Google Scholar

Xu Y, Carlinet E, Géraud T, Najman L (2017) Hierarchical Segmentation Using Tree-Based Shape Spaces. IEEE Trans. Pattern Anal. Mach. Intell 39:457–469. doi: 10.1109/TPAMI.2016.2554550.27101599 Ouvrir le DOISearch in Google Scholar

Yekkehkhany B, Safari A, Homayouni S, Hasanlou M (2014) A COMPARISON STUDY OF DIFFERENT KERNEL FUNCTIONS FOR SVM-BASED CLASSIFICATION OF MULTI-TEMPORAL POLARIMETRY SAR DATA. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2, (W3):281–285. doi: 10.5194/isprsarchives-XL-2-W3-281-2014. Ouvrir le DOISearch in Google Scholar

Zambanini S, Loghin AM, Pfeifer N, Soley E, Sablatnig R (2020) Detection of Parking Cars in Stereo Satellite Images. Remote Sens 12:2170. doi: 10.3390/rs12132170. Ouvrir le DOISearch in Google Scholar

Zanotta D, Zortea M, Ferreira M (2018) A supervised approach for simultaneous segmentation and classification of remote sensing images. ISPRS J. Photogramm. Remote Sens 142: 162–173. doi: 10.1016/j.isprsjprs.2018.05.021. Ouvrir le DOISearch in Google Scholar

Zhang D, Liu Z, Shi X (2020a) Transfer learning on Efficient-Net for remote sensing image classification. In: Proceedings - 2020 5th International Conference on Mechanical, Control and Computer EngineeringICMCCE, pp. 2255–2258. doi: 10.1109/ICMCCE51767.2020.00489. Ouvrir le DOISearch in Google Scholar

Zhang Q, Chang X, Bian S (2020b) Vehicle-Damage-Detection Segmentation Algorithm Based on Improved Mask RCNN. IEEE Access 8:6997–7004. doi: 10.1109/ACCESS.2020.2964055. Ouvrir le DOISearch in Google Scholar

Zhao W, Du S, Emery W (2017) Object-Based Convolutional Neural Network for High-Resolution Imagery Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 10:3386–3396. doi: 10.1109/JSTARS.2017.2680324. Ouvrir le DOISearch in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo