[
1. Abbott, A., 2006: Lyme disease: Uphill struggle. Nature, 439, 524–525. DOI: 10.1016/c2016-0-01430-4.10.1016/C2016-0-01430-4
]Search in Google Scholar
[
2. Aguero-Rosenfeld, M., Wang, G., Schwartz, I., Wormser, G., 2005: Diagnosis of Lyme Borreliosis. Clin. Microbiol. Rev., 18, 484–509. DOI: 10.1128/CMR.18.3.484-509.2005.10.1128/CMR.18.3.484-509.2005119597016020686
]Search in Google Scholar
[
3. Anderson, C., Brissette, C. A., 2021: The brilliance of Borrelia: Mechanisms of host immune evasion by Lyme disease-causing spirochetes. Pathogens, 10, 1–17. DOI: 10. 3390/pathogens10030281.10.3390/pathogens10030281800105233801255
]Search in Google Scholar
[
4. Appel, M. J. G., Allan, S., Jacobson, R. H., Lauderdale, T. L., Chang, Y. F., Shin, S. J., et al., 1993: Experimental lyme disease in dogs produces arthritis and persistent infection. J. Infect. Dis., 167, 651–654. DOI: 10.1093/infdis/167.3.651.10.1093/infdis/167.3.6518440936
]Search in Google Scholar
[
5. Barbour, A. G., 2018: Borreliaceae. In Whitman, W. B., et al.: Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley and Sons, Inc., Hoboken, NJ, 1–9.
]Search in Google Scholar
[
6. Barbour, A. G., Gupta, R. S., 2021: The family Borreliaceae (Spirochaetales), a diverse group in two genera of tick-borne spirochetes of mammals, birds, and reptiles. J. Med. Entomol., 58, 1513–1524. DOI: 10.1093/jme/tjab055.10.1093/jme/tjab05533903910
]Search in Google Scholar
[
7. Barth, C., Straubinger, R. K., Krupka, I., Müller, E., Sauter-Louis, C., Hartmann, K., 2014: Comparison of different diagnostic assays for the detection of Borrelia burgdorferi-specific antibodies in dogs. Vet. Clin. Pathol., 43, 496–504. DOI: 10.1111/vcp.12213.10.1111/vcp.1221325366257
]Search in Google Scholar
[
8. Bhide, M., Trávniček, M., Čurlík, J., Štefančíková, A., 2004: The importance of dogs in eco-epidemiology of Lyme borreliosis: A review. Vet. Med., 49, 135–142. DOI: 10.17221/5687-VETMED.10.17221/5687-VETMED
]Search in Google Scholar
[
9. Bjurman, N. K., Bradet, G., Lloyd, V. K., 2016: Lyme disease risk in dogs in New Brunswick. Can. Vet. J., 57, 981–984.
]Search in Google Scholar
[
10. Branda, J. A., Body, B. A., Boyle, J., Branson, B. M., Dattwyler, R. J., Fikrig, E., et al., 2018: Advances in serodiagnostic testing for Lyme disease are at hand. Clin. Infect. Dis., 66, 1133–1139. DOI: 10.1093/cid/cix943.10.1093/cid/cix943601907529228208
]Search in Google Scholar
[
11. Bruckbauer, H. R., Preac-Mursic, V., Fuchs, R., Wilske, B., 1992: Cross-reactive proteins of Borrelia burgdorferi. Eur. J. Clin. Microbiol. Infect. Dis., 11, 224–232. DOI: 10. 1007/BF02098084.10.1007/BF020980841597198
]Search in Google Scholar
[
12. Burgdorfer, W., Barbour, A., Hayes, S., Benach, J., Grunwaldt, E., Davis, J., 1982: Lyme disease – A tick-borne spirochetosis ? Science, 216, 1317–1319. DOI: 10.1126/science. 7043737.
]Search in Google Scholar
[
13. Companion Animal Parasite Council, 2022: Lyme disease – prevalence map. Available at https://capcvet.org/maps/#/2022/all-year/lyme-disease/dog/united-states. Accessed January 31, 2023.
]Search in Google Scholar
[
14. Carlos, G., dos Santos, F. P., Fröehlich, P. E., 2020: Canine metabolomics advances. Metabolomics, 16, 1–19. DOI: 10. 1007/s11306-020-1638-7.
]Search in Google Scholar
[
15. Centers for Disease Control and Prevention, 2022: Lyme disease: Data and surveillance. Available at https://capcvet.org/maps#/2022/all-year/lyme-disease/dog/united-states. Accessed January 31, 2023.
]Search in Google Scholar
[
16. Chomel, B., 2015: Lyme disease. Rev. Sci. Tech., 34, 569–576. DOI: 10.20506/rst.34.2.2385.10.20506/rst.34.2.238526601462
]Search in Google Scholar
[
17. Chou, J., Wünschmann, A., Hodzic, E., Borjesson, D. L., 2006: Detection of Borrelia burgdorferi DNA in tissues from dogs with presumptive Lyme borreliosis. J. Am. Vet. Med. Assoc., 229, 1260–1265. DOI: 10.2460/javma.229.8.1260.10.2460/javma.229.8.126017042727
]Search in Google Scholar
[
18. Collares-Pereira, M., Couceiro, S., Franca, I., Kurten-bach, K., Schäfer, S. M., Vitorino, L., et al., 2004: First isolation of Borrelia lusitaniae from a human patient. J. Clin. Microbiol., 42, 1316–1318. DOI: 10.1128/JCM.42.3.1316-1318.2004.10.1128/JCM.42.3.1316-1318.200435681615004107
]Search in Google Scholar
[
19. Comstedt, P., Schüler, W., Meinke, A., Lundberg, U., 2017: The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes. PLOS ONE, 12, 1–13. DOI: 10.1371/journal.pone.0184357.10.1371/journal.pone.0184357558118328863166
]Search in Google Scholar
[
20. Cutler, S. J., Rudenko, N., Golovchenko, M., Cramaro, W. J., Kirpach, J., Savic, S., et al., 2017: Diagnosing borreliosis. Vector-Borne Zoonotic Dis., 17, 2–11. DOI: 10.1089/vbz.2016.1962.10.1089/vbz.2016.196228055580
]Search in Google Scholar
[
21. Dai, X., Shen, L., 2022: Advances and trends in omics technology development. Front. Med., 9, 1–25. DOI: 10.3389/fmed.2022.911861.10.3389/fmed.2022.911861928974235860739
]Search in Google Scholar
[
22. Dattwyler, R. J., Arnaboldi, P. M., 2014: Editorial commentary: Comparison of Lyme disease serologic assays and Lyme specialty laboratories. Clin. Infect. Dis., 59, 1711–1713. DOI: 10.1093/cid/ciu705.10.1093/cid/ciu70525182243
]Search in Google Scholar
[
23. Delgado, S., Cármenes, P., 1995: Seroepidemiological survey for Borrelia burgdorferi (Lyme disease) in dogs from northwestern of Spain. Eur. J. Epidemiol., 11, 321–324. DOI: 10.1007/BF01719437.10.1007/BF017194377493665
]Search in Google Scholar
[
24. Dolange, V., Simon, S., Morel, N., 2021: Detection of Borrelia burgdorferi antigens in tissues and plasma during early infection in a mouse model. Sci. Rep., 11, 1–13. DOI: 10. 1038/s41598-021-96861-z.10.1038/s41598-021-96861-z840566034462491
]Search in Google Scholar
[
25. Embers, M. E., Narasimhan, S., 2013: Vaccination against Lyme disease: Past, present, and future. Front. Cell. Infect. Microbiol., 3, 1–15. DOI: 10.3389/fcimb.2013.00006.10.3389/fcimb.2013.00006356983823407755
]Search in Google Scholar
[
26. Feng, J., Shi, W., Zhang, S., Sullivan, D., Auwaerter, P. G., Zhang, Y., 2016: A drug combination screen identifies drugs active against amoxicillin-induced round bodies of in vitro Borrelia burgdorferi persisters from an FDA drug library. Front. Microbiol., 7, 1–12. DOI: 10.3389/fmicb.2016.00743.10.3389/fmicb.2016.00743487677527242757
]Search in Google Scholar
[
27. Feng, J., Auwaerter, P. G., Zhang, Y., 2015: Drug combinations against Borrelia burgdorferi persisters in vitro: Eradication achieved by using daptomycin, cefoperazone and doxycycline. PLOS ONE, 10, 1–15. DOI: 10.1371/journal. pone.0117207.
]Search in Google Scholar
[
28. Galluzzo, P., Grippi, F., Di Bella, S., Santangelo, F., Sciortino, S., Castiglia, A., et al., 2020: Seroprevalence of Borrelia burgdorferi in stray dogs from southern Italy. Microorganisms, 8, 1–8. DOI: 10.3390/microorganisms8111688.10.3390/microorganisms8111688769207233142966
]Search in Google Scholar
[
29. Gatellet, M., Vanderheyden, S., Abee, M., Adaszek, Ł., Varloud, M., 2019: A Suspected case of Lyme borreliosis in a dog from Belgium. Case Reports Vet. Med., 2019, 1–3. DOI: 10.1155/2019/3973901.10.1155/2019/3973901645886131049243
]Search in Google Scholar
[
30. Gerber, B., Haug, K., Eichenberger, S., Reusch, C. E., Wittenbrink, M. M., 2009: Follow-up of Bernese Mountain dogs and other dogs with serologically diagnosed Borrelia burgdorferi infection: What happens to seropositive animals ? BMC Vet. Res., 5, 1–8. DOI: 10.1186/1746-6148-5-18.10.1186/1746-6148-5-18269714619426490
]Search in Google Scholar
[
31. Gettings, J. R., Lopez, J. E., Krishnavahjala, A., Armstrong, B. A., Thompson, A. T., Yabsley, M. J., 2019: Antibodies to Borrelia turicatae in experimentally infected dogs cross-react with Borrelia burgdorferi serologic assays. J. Clin. Microbiol., 57. DOI: 10.1128/JCM.00628-19.10.1128/JCM.00628-19671189731270181
]Search in Google Scholar
[
32. Golovchenko, M., Vancová, M., Clark, K., Oliver, J. H., Grubhoffer, L., Rudenko, N., 2016: A divergent spirochete strain isolated from a resident of the southeastern United States was identified by multilocus sequence typing as Borrelia bissettii. Parasites and Vectors, 9, 1–5. DOI: 10.1186/s13071-016-1353-4.10.1186/s13071-016-1353-4474311426846867
]Search in Google Scholar
[
33. Goossens, H. A. T., Van den Bogaard, A. E., Nohlmans, M. K. E., 2001: Dogs as sentinels for human Lyme borreliosis in the Netherlands. J. Clin. Microbiol., 39, 844–848. DOI: 10.1128/JCM.39.3.844-848.2001.10.1128/JCM.39.3.844-848.20018783911230393
]Search in Google Scholar
[
34. Guerra, M. A., Walker, E. D., Kitron, U., 2001: Canine surveillance system for Lyme borreliosis in Wisconsin and Northern Illinois: Geographic distribution and risk factor analysis. Am. J. Trop. Med. Hyg., 65, 546–552. DOI: 10.4269/ajtmh.2001.65.546.10.4269/ajtmh.2001.65.54611716112
]Search in Google Scholar
[
35. Gupta, R. S., 2019: Distinction between Borrelia and Borreliella is more robustly supported by molecular and phenotypic characteristics than all other neighbouring prokaryotic genera: Response to Margos’ et al. “The genus Borrelia reloaded” (PLOS ONE, 13,12, E0208432). PLOS ONE, 14, 1–22. DOI: 10.1371/journal.pone.0221397.10.1371/journal.pone.0221397671153631454394
]Search in Google Scholar
[
36. Hovius, K. E., Stark, L. A. M., Bleumink-Pluym, N. M. C., van de Pol, I., Verbeek-de Kruif, N., Rijpkema, S. G. T., et al., 1999: Presence and distribution of Borrelia burgdorferi sensu lato species in internal organs and skin of naturally infected symptomatic and asymptomatic dogs, as detected by polymerase chain reaction. Vet. Q., 21, 54–58. DOI: 10.1080/01652176.1999.9694992.10.1080/01652176.1999.969499210321014
]Search in Google Scholar
[
37. Hoxmeier, J. C., Fleshman, A. C., Broeckling, C. D., Prenni, J. E., Dolan, M. C., Gage, K. L., et al., 2017: Metabolomics of the tick-Borrelia interaction during the nymphal tick blood meal. Sci. Rep., 7, 1–11. DOI: 10.1038/srep44394.10.1038/srep44394534738628287618
]Search in Google Scholar
[
38. Hutton, T., Goldstein, R. E., Njaa, B. L., Atwater, D. Z., Chang, Y. F., Simpson, K. W., 2008: Search for Borrelia burgdorferi in kidneys of dogs with suspected “Lyme nephritis”. J. Vet. Intern. Med., 22, 860–865. DOI: 10.1111/j.1939-1676.2008.0131.x.10.1111/j.1939-1676.2008.0131.x18564223
]Search in Google Scholar
[
39. Izac, J. R., Camire, A. C., Earnhart, C. G., Embers, M. E., Funk, R. A., Breitschwerdt, E. B., et al., 2019: Analysis of the antigenic determinants of the OspC protein of the Lyme disease spirochetes: Evidence that the C10 motif is not immunodominant or required to elicit bactericidal antibody responses. Vaccine, 37, 2401–2407. DOI: 10.1016/j.vaccine. 2019.02.007.
]Search in Google Scholar
[
40. Kalish, R. A., McHugh, G., Granquist, J., Shea, B., Ruthazer, R., Steere, A. C., 2001: Persistence of immunoglobulin M or immunoglobulin G antibody responses to Borrelia burgdorferi 10–20 years after active Lyme disease. Clin. Infect. Dis., 33, 780–785. DOI: 10.1086/322669.10.1086/32266911512082
]Search in Google Scholar
[
41. Kenedy, M. R., Lenhart, T. R., Akins, D. R., 2012: The role of Borrelia burgdorferi outer surface proteins. FEMS Immunol. Med. Microbiol., 66, 1–19. DOI: 10.1111/j.1574-695X.2012.00980.x.10.1111/j.1574-695X.2012.00980.x342438122540535
]Search in Google Scholar
[
42. Kilpatrick, A. M., Dobson, A. D. M., Levi, T., Salkeld, D. J., Swei, A., Ginsberg, H. S., et al., 2017: Lyme disease ecology in a changing world: Consensus, uncertainty and critical gaps for improving control. Philos. Trans. R. Soc. B Biol. Sci., 372, 1–15. DOI: 10.1098/rstb.2016.0117.10.1098/rstb.2016.0117541386928438910
]Search in Google Scholar
[
43. Krämer, F., Hüsken, R., Krüdewagen, E. M., Deuster, K., Blagburn, B., Straubinger, R. K., et al., 2020: Prevention of transmission of Borrelia burgdorferi sensu lato and Ana-plasma phagocytophilum by Ixodes spp. ticks to dogs treated with the Seresto® collar (imidacloprid 10 % + flumethrin 4.5 %). Parasitol. Res., 119, 299–315. DOI: 10.1007/s00436-019-06394-8.10.1007/s00436-019-06394-8694203431734862
]Search in Google Scholar
[
44. Krause, P. J., Foley, D. T., Burke, G. S., Christianson, D., Closter, L., Spielman, A., et al., 2006: Reinfection and relapse in early Lyme disease. Am. J. Trop. Med. Hyg., 75, 1090–1094. DOI: 10.4269/ajtmh.2006.75.1090.10.4269/ajtmh.2006.75.1090
]Search in Google Scholar
[
45. Krupka, I., Straubinger, R. K., 2010: Lyme borreliosis in dogs and cats: Background, diagnosis, treatment and prevention of infections with Borrelia burgdorferi sensu stricto. Vet. Clin. North Am. Small Anim. Pract., 40, 1103–1119. DOI: 10.1016/j.cvsm.2010.07.011.10.1016/j.cvsm.2010.07.01120933139
]Search in Google Scholar
[
46. Kybicová, K., Lukavská, A., Balátová, P., 2018: Lyme borreliosis – cultivation of Borrelia burgdorferi sensu lato (In Czech). Zprávy Cent. Epidemiol. Mikrobiol. (SZÚ Prague), 27, 113–115.
]Search in Google Scholar
[
47. Lebech, A. M., Clemmensen, O., Hansen, K., 1995: Comparison of in vitro culture, immunohistochemical staining, and PCR for detection of Borrelia burgdorferi in tissue from experimentally infected animals. J. Clin. Microbiol., 33, 2328–2333. DOI: 10.1128/jcm.33.9.2328-2333.1995.10.1128/jcm.33.9.2328-2333.19952284047494022
]Search in Google Scholar
[
48. Liang, F. T., Jacobson, R. H., Straubinger, R. K., Groot-ers, A., Philipp, M. T., 2000: Characterization of a Borrelia burgdorferi VlsE invariable region useful in canine Lyme disease serodiagnosis by enzyme-linked immunosorbent assay. J. Clin. Microbiol., 38, 4160–4166. DOI: 10.1128/jcm. 38.11.4160-4166.2000.
]Search in Google Scholar
[
49. Liang, F. T., Philipp, M. T., 1999: Analysis of antibody response to invariable regions of VlsE, the variable surface antigen of Borrelia burgdorferi. Infect. Immun., 67, 6702–6706. DOI: 10.1128/iai.67.12.6702-6706.1999.10.1128/IAI.67.12.6702-6706.19999708810569796
]Search in Google Scholar
[
50. Little, S. E., Heise, S. R., Blagburn, B. L., Callister, S. M., Mead, P. S., 2010: Lyme borreliosis in dogs and humans in the USA. Trends Parasitol., 26, 213–218. DOI: 10.1016/j.pt. 2010.01.006.
]Search in Google Scholar
[
51. Littman, M. P., Gerber, B., Goldstein, R. E., Labato, M. A., Lappin, M. R., Moore, G. E., 2018: ACVIM consensus update on Lyme borreliosis in dogs and cats. J. Vet. Intern. Med., 32, 887–903. DOI: 10.1111/jvim.15085.10.1111/jvim.15085598028429566442
]Search in Google Scholar
[
52. Littman, M. P., Goldstein, R. E., Labato, M., Lappin, M. R., Moore, G. E., 2006: ACVIM small animal consensus statement on Lyme disease in dogs: Diagnosis, treatment, and prevention. J. Vet. Intern. Med., 20, 422–434. DOI: 10.1111/j. 1939-1676.2006.tb02880.x.
]Search in Google Scholar
[
53. Liu, J., Drexel, J., Andrews, B., Eberts, M., Breitschwerdt, E., Chandrashekar, R., 2018: Comparative evaluation of 2 in-clinic assays for vector-borne disease testing in dogs. Top. Companion Anim. Med., 33, 114–118. DOI: 10.1053/j. tcam.2018.09.003.
]Search in Google Scholar
[
54. Liveris, D., Schwartz, I., McKenna, D., Nowakowski, J., Nadelman, R., DeMarco, J., et al., 2012: Comparison of five diagnostic modalities for direct detection of Borrelia burgdorferi in patients with early Lyme disease. Diagn. Microbiol. Infect. Dis., 73, 243–245. DOI: 10.1016/j.diagmicrobio.2012.03.026.10.1016/j.diagmicrobio.2012.03.026337784322571973
]Search in Google Scholar
[
55. Lohr, B., Fingerle, V., Norris, D. E., Hunfeld, K. P., 2018: Laboratory diagnosis of Lyme borreliosis: Current state of the art and future perspectives. Crit. Rev. Clin. Lab. Sci., 55, 219–245. DOI: 10.1080/10408363.2018.1450353.10.1080/10408363.2018.145035329606016
]Search in Google Scholar
[
56. Malloy, D. C., Nauman, R. K., Paxton, H., 1990: Detection of Borrelia burgdorferi using the polymerase chain reaction. J. Clin. Microbiol., 28, 1089–1093. DOI: 10.1128/jcm.28.6. 1089-1093.1990.
]Search in Google Scholar
[
57. Margos, G., Lane, R. S., Fedorova, N., Koloczek, J., Pies-man, J., Hojgaard, A., et al., 2016: Borrelia bissettiae sp. nov. and Borrelia californiensis sp. nov. prevail in diverse enzootic transmission cycles. Int. J. Syst. Evol. Microbiol., 66, 1447–1452. DOI: 10.1099/ijsem.0.000897.10.1099/ijsem.0.000897580175926813420
]Search in Google Scholar
[
58. Margos, G., Fedorova, N., Becker, N. S., Kleinjan, J. E., Marosevic, D., Krebs, S., et al., 2020: Borrelia maritima sp. nov., a novel species of the Borrelia burgdorferi sensu lato complex, occupying a basal position to North American species. Int. J. Syst. Evol. Microbiol., 70, 849–856. DOI: 10. 1099/ijsem.0.003833.10.1099/ijsem.0.00383331793856
]Search in Google Scholar
[
59. Margos, G., Sing, A., Fingerle, V., 2017: Published data do not support the notion that Borrelia valaisiana is human pathogenic. Infection, 45, 567–569. DOI: 10.1007/s15010-017-1032-1.10.1007/s15010-017-1032-128573415
]Search in Google Scholar
[
60. Margos, G., Castillo-Ramirez, S., Cutler, S., Dessau, R. B., Eikeland, R., Estrada-Peña, A., et al., 2020: Rejection of the name Borreliella and all proposed species comb. nov. placed therein. Int. J. Syst. Evol. Microbiol., 70, 3577–3581. DOI: 10.1099/ijsem.0.004149.10.1099/ijsem.0.00414932320380
]Search in Google Scholar
[
61. Merino, F. J., Serrano, J. L., Saz, J. V., Nebreda, T., Gegundez, M., Beltran, M., 2000: Epidemiological characteristics of dogs with Lyme borreliosis in the province of Soria (Spain). Eur. J. Epidemiol., 16, 97–100. DOI: 10.1023/A:1007 690807637.
]Search in Google Scholar
[
62. Minkus, G., Breuer, W., Wanke, R., Hermanns, W., Reusch, C., Leuterer, G., et al., 1994: Familial nephropathy in Bernese Mountain dogs. Vet. Pathol., 31, 421–428. DOI: 10. 1177/030098589403100403.10.1177/0300985894031004037941230
]Search in Google Scholar
[
63. Miró, G., Wright, I., Michael, H., Burton, W., Hegarty, E., Rodón, J., et al., 2022: Seropositivity of main vector-borne pathogens in dogs across Europe. Parasites and Vectors, 15, 1–13. DOI: 10.1186/s13071-022-05316-5.10.1186/s13071-022-05316-5916929535668469
]Search in Google Scholar
[
64. Molins, C. R., Ashton, L. V., Wormser, G. P., Hess, A. M., Delorey, M. J., Mahapatra, S., et al., 2015: Development of a metabolic biosignature for detection of early Lyme disease. Clin. Infect. Dis., 60, 1767–1775. DOI: 10.1093/cid/civ185.10.1093/cid/civ185481080825761869
]Search in Google Scholar
[
65. Nagana Gowda, G. A., Zhang, S., Gu, H., Asiago, V., Shanaiah, N., Raftery, D., 2008: Metabolomics-based methods for early disease diagnostics: A review. Expert Rev. Mol. Diagn., 8, 617–633. DOI: 10.1586/147371 59.8.5.617.
]Search in Google Scholar
[
66. Norris, S. J., 2006: Antigenic variation with a twist – The Borrelia story. Mol. Microbiol., 60, 1319–1322. DOI: 10.11 11/j.1365-2958.2006.05204.x.10.1111/j.1365-2958.2006.05204.x16796669
]Search in Google Scholar
[
67. Pangrácová, L., Derdáková, M., Pekárik, L., Hviščová, I., Víchová, B., Stanko, M., et al., 2013: Ixodes ricinus abundance and its infection with the tick-borne pathogens in urban and suburban areas of Eastern Slovakia. Parasites and Vectors, 6, 1–8. DOI: 10.1186/1756-3305-6-238.10.1186/1756-3305-6-238375176223952975
]Search in Google Scholar
[
68. Pegalajar-Jurado, A., Fitzgerald, B. L., Islam, M. N., Belisle, J. T., Wormser, G. P., Waller, K. S., et al., 2018: Identification of urine metabolites as biomarkers of early Lyme disease. Sci. Rep., 8, 1–12. DOI: 10.1038/s41598-018-29713-y.10.1038/s41598-018-29713-y609393030111850
]Search in Google Scholar
[
69. Preyß-Jägeler, C., Müller, E., Straubinger, R. K., Hart-mann, K., 2016: Prävalenz von Antikörpern gegen Borrelia burgdorferi, Anaplasma phagocytophilum und bestimmte Leptospira-interrogans-Serovare bei Berner Sennenhunden. Tierarztl. Prax. Ausgabe K: Kleintiere – Heimtiere, 44, 77–85. DOI: 10.15654/TPK-140962.10.15654/TPK-14096227004451
]Search in Google Scholar
[
70. Pritt, B. S., Respicio-Kingry, L. B., Sloan, L. M., Schriefer, M. E., Replogle, A. J., Bjork, J., et al., 2016: Borrelia mayonii sp. nov., a member of the Borrelia burgdorferi sensu lato complex, detected in patients and ticks in the upper midwestern United States. Int. J. Syst. Evol. Microbiol., 66, 4878–4880. DOI: 10.1099/ijsem.0.001445.10.1099/ijsem.0.001445521495727558626
]Search in Google Scholar
[
71. Pritt, B. S., Mead, P. S., Johnson, D. K. H., Neitzel, D. F., Respicio-Kingry, L. B., Davis, J. P., et al., 2016: Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: A descriptive study. Lancet Infect. Dis., 16, 556–564. DOI: 10.1016/S 1473-3099(15)00464-8.
]Search in Google Scholar
[
72. Radolf, J. D., Caimano, M. J., Stevenson, B., Hu, L. T., 2012: Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol., 10, 87–99. DOI: 10.1038/nrmicro2714.10.1038/nrmicro2714331346222230951
]Search in Google Scholar
[
73. Reif, K. E., 2020: Lyme disease in dogs: Signs and prevention. Today’s Vet. Pract., 10, 24–28. Available at https://todaysveterinarypractice.com/. Accessed January 31, 2023.
]Search in Google Scholar
[
74. Rosà, R., Andreo, V., Tagliapietra, V., Baráková, I., Arnoldi, D., Hauffe, H. C., et al., 2018: Effect of climate and land use on the spatio-temporal variability of tick-borne bacteria in Europe. Int. J. Environ. Res. Public Health, 15, 1–15. DOI: 10.3390/ijerph15040732.10.3390/ijerph15040732592377429649132
]Search in Google Scholar
[
75. Rudenko, N., Golovchenko, M., Kybicova, K., Vancova, M., 2019: Metamorphoses of Lyme disease spirochetes: Phenomenon of Borrelia persisters. Parasites and Vectors, 12, 1–10. DOI: 10.1186/s13071-019-3495-7.10.1186/s13071-019-3495-7652136431097026
]Search in Google Scholar
[
76. Sapi, E., Kaur, N., Anyanwu, S., Luecke, D. F., Datar, A., Patel, S., et al., 2011: Evaluation of in vitro antibiotic susceptibility of different morphological forms of Borrelia burgdorferi. Infect. Drug Resist., 4, 97–113. DOI: 10.2147/IDR.S19201.10.2147/IDR.S19201313287121753890
]Search in Google Scholar
[
77. Schwartz, A. M., Hinckley, A. F., Mead, P. S., Hook, S. A., Kugeler, K. J., 2017: Surveillance for Lyme disease – United States, 2008–2015. MMWR Surveill. Summ., 66, 1–12. DOI: 10.15585/mmwr.ss6622a1.10.15585/mmwr.ss6622a1582962829120995
]Search in Google Scholar
[
78. Schwarzová, K., Ferko, M., Farkaš, P. (Eds.), 2019: Arbobactera, Leptospira, Kapnocytophages, Streptobacili – Bacteria with Pathogenic Potential Transmissible to Man (In Slovak). OZ Preveda, Banská Bystrica, Slovakia, 54 pp.
]Search in Google Scholar
[
79. Smith, A. J., Oertle, J., Prato, D., 2014: Chronic Lyme disease: Persistent clinical symptoms related to immune evasion, antibiotic resistance and various defense mechanisms of Borrelia burgdorferi. Open J. Med. Microbiol., 4, 252–260. DOI: 10.4236/ojmm.2014.44029.10.4236/ojmm.2014.44029
]Search in Google Scholar
[
80. Spencer, J. A., Butler, J. M., Stafford, K. C., Pough, M. B., Levy, S. A., Bledsoe, D. L., et al., 2003: Evaluation of permethrin and imidacloprid for prevention of Borrelia burgdorferi transmission from blacklegged ticks (Ixodes scapularis) to Borrelia burgdorferi-free dogs. Parasitol. Res., 90, 106–107. DOI: 10.1007/s00436-003-0904-8.10.1007/s00436-003-0904-812928869
]Search in Google Scholar
[
81. Sperling, J. L. H., Sperling, F. A. H., 2009: Lyme borreliosis in Canada: Biological diversity and diagnostic complexity from an entomological perspective. Can. Entomol., 141, 521–549. DOI: 10.4039/n08-CPA04.10.4039/n08-CPA04
]Search in Google Scholar
[
82. Spickler, A. R., 2020: Lyme Disease. Available at https://www.cfsph.iastate.edu/Factsheets/pdfs/lyme_disease.pdf. Updated January 2020. Accessed January 31, 2023.
]Search in Google Scholar
[
83. Stanek, G., Fingerle, V., Hunfeld, K. P., Jaulhac, B., Kaiser, R., Krause, A., et al., 2011: Lyme borreliosis: Clinical case definitions for diagnosis and management in Europe. Clin. Microbiol. Infect., 17, 69–79. DOI: 10.1111/j.1469-0691.2010.03175.x.10.1111/j.1469-0691.2010.03175.x20132258
]Search in Google Scholar
[
84. Stanek, G., Wormser, G. P., Gray, J., Strle, F., 2012: Lyme borreliosis. Lancet, 379, 461–473. DOI: 10.1016/S0140-67 36(11)60103-7.
]Search in Google Scholar
[
85. Stanko, M., Derdáková, M., Špitalská, E., Kazimírová, M., 2022: Ticks and their epidemiological role in Slovakia: From the past till present. Biologia, 77, 1575–1610. DOI: 10. 1007/s11756-021-00845-3.10.1007/s11756-021-00845-3844648434548672
]Search in Google Scholar
[
86. Steere, A. C., Strle, F., Wormser, G. P., Hu, L. T., Branda, J. A., Li, X., et al., 2016: Lyme borreliosis. Nat. Rev. Dis. Prim., 2, 1–18. DOI: 10.1038/nrdp.2016.90.10.1038/nrdp.2016.90553953927976670
]Search in Google Scholar
[
87. Štefančíková, A., Derdáková, M., Škardová, I., Szestáková, E., Čisláková, L., Kováčová, D., et al., 2008: Some epidemiological and epizootiological aspects of Lyme borreliosis in Slovakia with the emphasis on the problems of sero-logical diagnostics. Biologia, 63, 1135–1142. DOI: 10.2478/s11756-008-0177-x.10.2478/s11756-008-0177-x
]Search in Google Scholar
[
88. Stillman, B. A., Thatcher, B., Beall, M. J., Lappin, M., O’Connor, T. P., Chandrashekar, R., 2019: Borrelia burgdorferi antibody test results in dogs administered 4 different vaccines. Top. Companion Anim. Med., 37, 1–4. DOI: 10.10 16/j.tcam.2019.100358.10.1016/j.tcam.2019.10035831837754
]Search in Google Scholar
[
89. Straubinger, R. K., Summers, B. A., Chang, Y. F., Appel, M. J. G., 1997: Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment. J. Clin. Microbiol., 35, 111–116. DOI: 10.1128/jcm.35.1.111-116.1997.10.1128/jcm.35.1.111-116.19972295218968890
]Search in Google Scholar
[
90. Straubinger, R. K., Straubinger, A. F., Summers, B. A., Jacobson, R. H., 2000: Status of Borrelia burgdorferi infection after antibiotic treatment and the effects of corticosteroids: An experimental study. J. Infect. Dis., 181, 1069–1081. DOI: 10.1086/315340.10.1086/31534010720533
]Search in Google Scholar
[
91. Strnad, M., Hönig, V., Růžek, D., Grubhoffer, L., Rego, R. O. M., 2017: Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl. Environ. Microbiol., 83, 1–16. DOI: 10.1128/AEM.00609-17.10.1128/AEM.00609-17551467728550059
]Search in Google Scholar
[
92. Tilly, K., Bestor, A., Rosa, P. A., 2013: Lipoprotein succession in Borrelia burgdorferi: Similar but distinct roles for OspC and VlsE at different stages of mammalian infection. Mol. Microbiol., 89, 216–227. DOI: 10.1111/mmi.12271.10.1111/mmi.12271371363123692497
]Search in Google Scholar
[
93. Töpfer, K. H., Straubinger, R. K., 2007: Characterization of the humoral immune response in dogs after vaccination against the Lyme borreliosis agent. A study with five commercial vaccines using two different vaccination schedules. Vaccine, 25, 314–326. DOI: 10.1016/j.vaccine.2006. 07.031.
]Search in Google Scholar
[
94. Tran, H., Mcconville, M., Loukopoulos, P., 2020: Metabolomics in the study of spontaneous animal diseases. J. Vet. Diagnostic Investig., 32, 635–647. DOI: 10.1177/10406387209 48505.
]Search in Google Scholar
[
95. Valko-Rokytovská, M., Očenáš, P., Salayová, A., Kostecká, Z., 2018: New developed UHPLC method for selected urine metabolites. J. Chromatogr. Sep. Tech., 9, 1–8. DOI: 10. 4172/2157-7064.1000404.
]Search in Google Scholar
[
96. Valko-Rokytovská, M., Očenáš, P., Salayová, A., Titková, R., Kostecká, Z., 2020: Specific urinary metabolites in canine mammary gland tumours. J. Vet. Sci., 21, 1–10. DOI: 10. 4142/jvs.2020.21.e23.10.4142/jvs.2020.21.e23711356832233131
]Search in Google Scholar
[
97. Venczel, R., Knoke, L., Pavlovic, M., Dzaferovic, E., Vaculova, T., Silaghi, C., et al., 2016: A novel duplex real-time PCR permits simultaneous detection and differentiation of Borrelia miyamotoi and Borrelia burgdorferi sensu lato. Infection, 44, 47–55. DOI: 10.1007/s15010-015-0820-8.10.1007/s15010-015-0820-826168860
]Search in Google Scholar
[
98. Vogt, N. A., Sargeant, J. M., MacKinnon, M. C., Versluis, A. M., 2019: Efficacy of Borrelia burgdorferi vaccine in dogs in North America: A systematic review and meta-analysis. J. Vet. Intern. Med., 33, 23–36. DOI: 10.1111/jvim.15344.10.1111/jvim.15344633554130511365
]Search in Google Scholar
[
99. Vogt, N. A., Stevens, C. P. G., 2021: Why the rationale for canine Borrelia burgdorferi vaccination is unpersuasive. Front. Vet. Sci., 8, 1–3. DOI: 10.3389/fvets.2021.719060.10.3389/fvets.2021.719060838531334458359
]Search in Google Scholar
[
100. Vrhovec, M. G., Pantchev, N., Failing, K., Bauer, C., Travers-Martin, N., Zahner, H., 2017: Retrospective analysis of canine vector-borne diseases (CVBD) in Germany with emphasis on the endemicity and risk factors of leishmaniosis. Parasitol. Res., 116, 131–144. DOI: 10.1007/s004 36-017-5499-6.
]Search in Google Scholar
[
101. Wagner, B., Johnson, J., Garcia-Tapia, D., Honsberger, N., King, V., Strietzel, C., et al., 2015: Comparison of effectiveness of cefovecin, doxycycline, and amoxicillin for the treatment of experimentally induced early Lyme borreliosis in dogs. BMC Vet. Res., 11, 1–8. DOI: 10.1186/s12917-015-0475-9.10.1186/s12917-015-0475-9451393826205247
]Search in Google Scholar
[
102. WHO, Regional Office for Europe, 2006: Lyme borreliosis in Europe. Available at https://www.euro.who.int/__data/assets/pdf_file/0008/246167/Fact-sheet-Lyme-borreliosis-Eng.pdf. Accessed January 31, 2023.
]Search in Google Scholar
[
103. Wormser, G. P., Schwartz, I., 2009: Antibiotic treatment of animals infected with Borrelia burgdorferi. Clin. Microbiol. Rev., 22, 387–395. DOI: 10.1128/CMR.00004-09.10.1128/CMR.00004-09270839319597005
]Search in Google Scholar
[
104. Zhang, J., Wei, S., Liu, L., Nagana Gowda, G. A., Bonney, P., Stewart, J., et al., 2012: NMR-based metabolomics study of canine bladder cancer. Biochim. Biophys. Acta Mol. Basis Dis., 1822, 1807–1814. DOI: 10.1016/j.bbadis.2012.08.001.10.1016/j.bbadis.2012.08.00122967815
]Search in Google Scholar