Accès libre

Attenuation Analysis of Polymer Optic Fibres (POF) Manufactured with Different Materials

, , ,  et   
25 févr. 2025
À propos de cet article

Citez
Télécharger la couverture

Fig. 1.

Continuous melt spinning process
Continuous melt spinning process

Fig. 2.

Visualisation of the input and output power of a POF
Visualisation of the input and output power of a POF

Fig. 3.

Aperture angle and cross section of glass optical fibres and polymer optical fibres, the first number refers the core diameter, whereas the second number refers the fiber diameter (core and cladding)
Aperture angle and cross section of glass optical fibres and polymer optical fibres, the first number refers the core diameter, whereas the second number refers the fiber diameter (core and cladding)

Fig. 4.

Bicomponent fibre manufacturing in the melt spinning line
Bicomponent fibre manufacturing in the melt spinning line

Fig. 5.

Attenuation test measurement device settlement. (a) LED light source, (b) POF, (c) integrating sphere with light detector, and (d) measure power
Attenuation test measurement device settlement. (a) LED light source, (b) POF, (c) integrating sphere with light detector, and (d) measure power

Fig. 6.

Light emission views of POFs on fabric with different coloured light sources (the light source colors are left to right: white, blue, purple, yellow)
Light emission views of POFs on fabric with different coloured light sources (the light source colors are left to right: white, blue, purple, yellow)

Fig. 7.

Comparison of the two different attenuation measurements of two specimens on the same bobbin with respect to their each measurement length
Comparison of the two different attenuation measurements of two specimens on the same bobbin with respect to their each measurement length

Fig. 8.

Overall mean attenuation measurement of fibres for two specimens on the same bobbin for 1 mm
Overall mean attenuation measurement of fibres for two specimens on the same bobbin for 1 mm

Properties of materials for manufacturing of POF [17, 18, 19, 20, 21, 22, 23, 24]

Material PMMA PVDF PMP PLA PP
Grade Plexiglas 7N Solvay Solef 1008 MX 002 Ingeo 6202D Sabic 513A
Density 1.19 g/cm3 1.68 g/cm3 0.834 g/cm3 1.24 g/cm3 0.905 g/cm3
Glass transition temperature (Tg) 110 °C −67 °C 23–50 °C 55–60 °C −25°C
Melting temperature (Tm) 220–260 °C 158–200 °C 224 °C 220–240 °C 120–176 °C
Refractive index (RI) 1.49 1.42–1.49 1.46 1.456 1.49
Luminous transmittance 92 % 85–94 % 93 % 90% n.a.
Crystallinity A SC (50 % A) SC (55–85 %) SC (65 %) SC (3.2–67 %)

Spinning process parameter of 1 mm fibres [1]

Bobbin PMMA-PVDF (1mm)-C PMMA-PVDF (1mm)-D PMMA-PMP (1mm) PMMA-PLA (1mm) PMMA-PP (1mm)
Polymer Material Core Polymer PMMA
Core Grade Plexiglas 7N
Cladding Polymer PVDF PVDF PMP PLA PP
Cladding Grade Solvay Solef 1008 Solvay Solef 1008 PMP MX002 Purapol L130 Sabic 513A
Ambient temperature (°C) 20
Temperature Profile (Core) Heating zone 1 (°C) 205
Heating zone 2 (Ext) (°C) 215 215 225 225 225
Heating zone 3 (°C) 230 230 235 235 235
Heating zone 4 (Probe head) (°C) 240 240 245 245 245
Heating zone 5 (Melt pipe) (°C) 250 250 255 255 255
Heating zone 6 (Pump Unit) (°C) 250
Extruder Pressure (Core Ext) (bar) 35
Pressure (Cladding Ext) (bar) 30
Process parameter Nozzle diameter (mm) 3.5
Core spin pump (cm3/U) 1.2
Core spin pump speed (rpm) 14.7 7.1 14.7 14.7 14.7
Cladding spin pump (cm3/U) 0.3
Cladding spin pump speed (rpm) 5
Take off unit (m/min) 23.2
Winder (m/min) 23.5
Heating section temperature (°C) 135
Water bath temperature (°C) 60–54 60–54 20 20 20

Historical development of the most significant SI-POF landmarks during the past 45 years [13, 14, 15, 16]

Year Organization Milestone
1968 Dupont First SI POF with PMMA core
1972 Toray First SI POF with PS core
1976 Mitsubishi Rayon Production of Eska™, a PMMA SI-POF: >300 dB/km @650 nm
1981 NTT Low attenuation PMMA SI POF 55 dB/km at 568 nm
1982 NTT First SI POF with deuterated PMMA core 20 dB/km at 650 nm
1983 Mitsubishi Rayon Production of step-index PMMA-POF: 65 dB/km @570 nm
1991 Hoechst Celanese SI PMMA “Infolite” POF 130 dB/km at 650 nm.
1993 Essex University Transmission at 631 Mbps over 100 m by means of a PMMA-core SI POF and an equalizer circuit
1994 Asahi Chemical First multicore SI POF for high speed transmission
1995 Mitsubishi Rayon, NEC Transmission at 156 Mbps over 100 m by means of a low NA SI POF and a fast red LED
1997 POF Consortium of Japan Standardization at ATM LAN 156 Mbps over 50 m of SI POF in the ATM Forum.
1997 POF Consortium of Japan Standardization of the norm IEEE 1394 156 Mb/s over 50 m of SI POF.
1998 MOST standard for automobiles started
2006–2007 10 Mbps over 400 meters of 1 mm SI POF (4-PAM, 8-PAM
2006–2007 100 Mbps over 200 meters of 1 mm SI POF (4-PAM, 8-PAM)
2011 POF-PLUS 1 Gbps over 50 meters of SI PMMA
2011 Opto Marine Co., Ltd./Korea 1 mm SI POF with data rates of 500 Mbps, 5 Gbps and 10 Gbps at 100 meters at 650 nm.
2013 KDPOF/Spain 1 Gbps of SI POF for the automotive industry