Attenuation Analysis of Polymer Optic Fibres (POF) Manufactured with Different Materials
25 févr. 2025
À propos de cet article
Catégorie d'article: Research Article
Publié en ligne: 25 févr. 2025
Pages: 24 - 31
DOI: https://doi.org/10.2478/ftee-2024-0037
Mots clés
© 2024 Can Esmercan et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Properties of materials for manufacturing of POF [17, 18, 19, 20, 21, 22, 23, 24]
Plexiglas 7N | Solvay Solef 1008 | MX 002 | Ingeo 6202D | Sabic 513A | |
1.19 g/cm3 | 1.68 g/cm3 | 0.834 g/cm3 | 1.24 g/cm3 | 0.905 g/cm3 | |
110 °C | −67 °C | 23–50 °C | 55–60 °C | −25°C | |
220–260 °C | 158–200 °C | 224 °C | 220–240 °C | 120–176 °C | |
1.49 | 1.42–1.49 | 1.46 | 1.456 | 1.49 | |
92 % | 85–94 % | 93 % | 90% | n.a. | |
A | SC (50 % A) | SC (55–85 %) | SC (65 %) | SC (3.2–67 %) |
Spinning process parameter of 1 mm fibres [1]
Core Polymer | PMMA | |||||
Core Grade | Plexiglas 7N | |||||
Cladding Polymer | PVDF | PVDF | PMP | PLA | PP | |
Cladding Grade | Solvay Solef 1008 | Solvay Solef 1008 | PMP MX002 | Purapol L130 | Sabic 513A | |
Ambient temperature (°C) | 20 | |||||
Heating zone 1 (°C) | 205 | |||||
Heating zone 2 (Ext) (°C) | 215 | 215 | 225 | 225 | 225 | |
Heating zone 3 (°C) | 230 | 230 | 235 | 235 | 235 | |
Heating zone 4 (Probe head) (°C) | 240 | 240 | 245 | 245 | 245 | |
Heating zone 5 (Melt pipe) (°C) | 250 | 250 | 255 | 255 | 255 | |
Heating zone 6 (Pump Unit) (°C) | 250 | |||||
Pressure (Core Ext) (bar) | 35 | |||||
Pressure (Cladding Ext) (bar) | 30 | |||||
Nozzle diameter (mm) | 3.5 | |||||
Core spin pump (cm3/U) | 1.2 | |||||
Core spin pump speed (rpm) | 14.7 | 7.1 | 14.7 | 14.7 | 14.7 | |
Cladding spin pump (cm3/U) | 0.3 | |||||
Cladding spin pump speed (rpm) | 5 | |||||
Take off unit (m/min) | 23.2 | |||||
Winder (m/min) | 23.5 | |||||
Heating section temperature (°C) | 135 | |||||
Water bath temperature (°C) | 60–54 | 60–54 | 20 | 20 | 20 |
Historical development of the most significant SI-POF landmarks during the past 45 years [13, 14, 15, 16]
1968 | Dupont | First SI POF with PMMA core |
1972 | Toray | First SI POF with PS core |
1976 | Mitsubishi Rayon | Production of Eska™, a PMMA SI-POF: >300 dB/km @650 nm |
1981 | NTT | Low attenuation PMMA SI POF 55 dB/km at 568 nm |
1982 | NTT | First SI POF with deuterated PMMA core 20 dB/km at 650 nm |
1983 | Mitsubishi Rayon | Production of step-index PMMA-POF: 65 dB/km @570 nm |
1991 | Hoechst Celanese | SI PMMA “Infolite” POF 130 dB/km at 650 nm. |
1993 | Essex University | Transmission at 631 Mbps over 100 m by means of a PMMA-core SI POF and an equalizer circuit |
1994 | Asahi Chemical | First multicore SI POF for high speed transmission |
1995 | Mitsubishi Rayon, NEC | Transmission at 156 Mbps over 100 m by means of a low NA SI POF and a fast red LED |
1997 | POF Consortium of Japan | Standardization at ATM LAN 156 Mbps over 50 m of SI POF in the ATM Forum. |
1997 | POF Consortium of Japan | Standardization of the norm IEEE 1394 156 Mb/s over 50 m of SI POF. |
1998 | MOST standard for automobiles started | |
2006–2007 | 10 Mbps over 400 meters of 1 mm SI POF (4-PAM, 8-PAM | |
2006–2007 | 100 Mbps over 200 meters of 1 mm SI POF (4-PAM, 8-PAM) | |
2011 | POF-PLUS | 1 Gbps over 50 meters of SI PMMA |
2011 | Opto Marine Co., Ltd./Korea | 1 mm SI POF with data rates of 500 Mbps, 5 Gbps and 10 Gbps at 100 meters at 650 nm. |
2013 | KDPOF/Spain | 1 Gbps of SI POF for the automotive industry |