Accès libre

Effect of the Surface modification of Cellulose nanofibers on the Mechanical Properties and Disintegrability of Specific PLA/Cellulose Composites

À propos de cet article

Citez

Gałęski A. (ed.): Stan i perspektywy rozwoju materiałów polimerowych (in Polish), CBMM PAN, Łódź (2008), chapter 4 Gałęski A. (ed.): Stan i perspektywy rozwoju materiałów polimerowych (in Polish) , CBMM PAN , Łódź ( 2008 ), chapter 4 Search in Google Scholar

Trznadel M. Biorozkładowalne materialy polimerowe (in Polish). Polimery 1995; 40(9): 485. Trznadel M. Biorozkładowalne materialy polimerowe (in Polish) . Polimery 1995 ; 40 ( 9 ): 485 . Search in Google Scholar

Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications. Prog Polym Sci 2010; 35: 338-356. Rasal RM Janorkar AV Hirt DE. Poly(lactic acid) modifications . Prog Polym Sci 2010 ; 35 : 338 - 356 . Search in Google Scholar

Gruber P R. et al.; US 5142023, 1992 Gruber P R. ; US 5142023 , 1992 Search in Google Scholar

Vatansever E, Arslan D, Nofar M. Polylactide cellulose-based nanocomposites. International Journal of Biological Macromolecules 2019; 137: 912-938. Vatansever E Arslan D Nofar M. Polylactide cellulose-based nanocomposites . International Journal of Biological Macromolecules 2019 ; 137 : 912 - 938 . Search in Google Scholar

Xiang Qi, Yiwei Ren, Xingzu Wang, New advances in the biodegradation of Poly(lactic) acid. International Biodeterioration & Biodegradation 2017; 117: 215-223. Qi Xiang Ren Yiwei Wang Xingzu , New advances in the biodegradation of Poly(lactic) acid . International Biodeterioration & Biodegradation 2017 ; 117 : 215 - 223 . Search in Google Scholar

Pluta M. Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization, Polymer 2004; 45: 8239. Pluta M. Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization , Polymer 2004 ; 45 : 8239 . Search in Google Scholar

Alvarado N, Romero J, Torres A, López de Dicastillo C, Rojas A, Galotto J, Guarda M. Supercritical impregnation of thymol in poly(lactic acid) filled with electrospun poly(vinyl alcohol)-cellulose nanocrystals nanofibres: Development an active food packaging material. J Food Eng 2018; 217: 1-10. Alvarado N Romero J Torres A López de Dicastillo C Rojas A Galotto J Guarda M. Supercritical impregnation of thymol in poly(lactic acid) filled with electrospun poly(vinyl alcohol)-cellulose nanocrystals nanofibres: Development an active food packaging material . J Food Eng 2018 ; 217 : 1 - 10 . Search in Google Scholar

Rancan F, Papakostas D, Hadam S, Hackbarth S, Delair T, Primard C, et al. Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res 2009; 26: 2027-2036. Rancan F Papakostas D Hadam S Hackbarth S Delair T Primard C Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy . Pharm Res 2009 ; 26 : 2027 - 2036 . Search in Google Scholar

Savioli Lopes M., Jardini AL, Maciel Filho R. Poly(lactic acid) production for tissue engineering applications Procedía Engineering 2012; 42: 1402-1413. Savioli Lopes M. Jardini AL Maciel Filho R. Poly(lactic acid) production for tissue engineering applications Procedía Engineering 2012 ; 42 : 1402 - 1413 . Search in Google Scholar

Pinar A, Mielicka E. Assessment of Polylactide Properties for Use in Knitted Clothing Products. Fibres Text East Eur 2021; 29, 5(149): 66-74. Pinar A Mielicka E. Assessment of Polylactide Properties for Use in Knitted Clothing Products . Fibres Text East Eur 2021 ; 29 , 5 ( 149 ): 66 - 74 . Search in Google Scholar

Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci 2012;37: 1657-1677 Saeidlou S Huneault MA Li H Park CB. Poly(lactic acid) crystallization . Prog Polym Sci 2012 ; 37 : 1657 - 1677 Search in Google Scholar

Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey M-C. Poly (lactic acid) blends: processing, properties and applications. Int J Biol Macromol 2019; 125: 307-360. Nofar M Sacligil D Carreau PJ Kamal MR Heuzey M-C. Poly (lactic acid) blends: processing, properties and applications . Int J Biol Macromol 2019 ; 125 : 307 - 360 . Search in Google Scholar

Nofar M, Park CB. Poly (lactic acid) foaming. Prog Polym Sci 2014;39: 1721-1741. Nofar M Park CB. Poly (lactic acid) foaming . Prog Polym Sci 2014 ; 39 : 1721 - 1741 . Search in Google Scholar

Nofar M, Salehiyan R, Ray SS: Rheology of poly (lactic acid)-based systems. Polym. Rev. 2019; 59 (3): 465-509. Nofar M Salehiyan R Ray SS : Rheology of poly (lactic acid)-based systems . Polym. Rev. 2019 ; 59 ( 3 ): 465 - 509 . Search in Google Scholar

Li C., Sun C., Wang C., Tan H., Xie Y., Zhang Y.Cellulose nanocrystal reinforced poly(lactic acid) nanocomposites prepared by a solution precipitation approach. Cellulose 2020; 27: 7489-7502. Li C. Sun C. Wang C. Tan H. Xie Y. Zhang Y. Cellulose nanocrystal reinforced poly(lactic acid) nanocomposites prepared by a solution precipitation approach . Cellulose 2020 ; 27 : 7489 - 7502 . Search in Google Scholar

Ilyas RA, Sapuan SM, Sanyang ML, Ishak, MR, Zainudin E. S.: Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: a review. Curr Anal Chem 2018; 14: 203-225. Ilyas RA Sapuan SM Sanyang ML Ishak MR Zainudin E. S. : Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: a review . Curr Anal Chem 2018 ; 14 : 203 - 225 . Search in Google Scholar

Nazrin A, Sapuan SM, Zuhri MYM, Ilyas RA, Syafiq R, Sherwani SFK. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications. Frontiers in Chemistry 2020; 8: Article 213. Nazrin A Sapuan SM Zuhri MYM Ilyas RA Syafiq R Sherwani SFK. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications . Frontiers in Chemistry 2020 ; 8 : Article 213 . Search in Google Scholar

Kargarzadeh H, Huang J, Lin N, Ahmad I, Mariano M, Dufresne A, Galeski A. Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites Prog Polym Sci 2018; 87: Kargarzadeh H Huang J Lin N Ahmad I Mariano M Dufresne A Galeski A. Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites Prog Polym Sci 2018 ; 87 : Search in Google Scholar

Kyutoku H, Maeda N, Sakamoto H., Nishimura H, Yamada K. Effect of surface treatment of cellulose fibre (CF) on durability of PLA/CF bio-composites. Carbohydr Polym 2019; 203: 95-102 Kyutoku H Maeda N Sakamoto H. Nishimura H Yamada K. Effect of surface treatment of cellulose fibre (CF) on durability of PLA/CF bio-composites . Carbohydr Polym 2019 ; 203 : 95 - 102 Search in Google Scholar

Almasi H, Ghanbarzadeh B., Dehghannya J., Entezami AA, Asl AK, Novel nanocomposites based on fatty acid modified cellulose nanofibres/poly(lactic acid): morphological and physical properties, Food Packaging and Shelf Life 2015; 5: 21-31. Almasi H Ghanbarzadeh B. Dehghannya J. Entezami AA Asl AK , Novel nanocomposites based on fatty acid modified cellulose nanofibres/poly(lactic acid): morphological and physical properties , Food Packaging and Shelf Life 2015 ; 5 : 21 - 31 . Search in Google Scholar

Ghasemi S, Behrooz R, Ghasemi I, Yassar RS, Long F. Development of nanocellulose-reinforced PLA nanocomposite by using maleated PLA (PLA-g-MA). J Thermoplast Compos 2018; 31, 1090-1101. Ghasemi S Behrooz R Ghasemi I Yassar RS Long F. Development of nanocellulose-reinforced PLA nanocomposite by using maleated PLA (PLA-g-MA) . J Thermoplast Compos 2018 ; 31 , 1090 - 1101 . Search in Google Scholar

Ling Z, Kai K, Ming-Bo Y, Wei Y. Recent progress on chemical modification of cellulose for high mechanicalperformance Poly(lactic acid)/Cellulose composite. Composites Communications 2021;23: 100548. Ling Z Kai K Ming-Bo Y Wei Y. Recent progress on chemical modification of cellulose for high mechanical-performance Poly(lactic acid)/Cellulose composite . Composites Communications 2021 ; 23 : 100548 . Search in Google Scholar

Lee JH, Park SH, Kim SH. Surface modification of cellulose nanowhiskers and their reinforcing effect in polylactide. Macromol. Res. 2014; 22: 424-430. Lee JH Park SH Kim SH. Surface modification of cellulose nanowhiskers and their reinforcing effect in polylactide . Macromol. Res . 2014 ; 22 : 424 - 430 . Search in Google Scholar

Oksman K, Aitomäki Y, Mathew A, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S. Review of the recent developments in cellulose nanocomposite processing, Composites: Part A 2016; 83: 2-18. Oksman K Aitomäki Y Mathew A Siqueira G Zhou Q Butylina S Tanpichai S Zhou X Hooshmand S. Review of the recent developments in cellulose nanocomposite processing , Composites: Part A 2016 ; 83 : 2 - 18 . Search in Google Scholar

Liu DY, Yuan XW, Bhattacharyya D, Easteal AJ. Characterisation of solution cast cellulose nanofibre-reinforced poly(lactic acid). EXPRESS Polym Lett 2010; 4 (1): 26-31. Liu DY Yuan XW Bhattacharyya D Easteal AJ. Characterisation of solution cast cellulose nanofibre-reinforced poly(lactic acid) . EXPRESS Polym Lett 2010 ; 4 ( 1 ): 26 - 31 . Search in Google Scholar

Orellana JL, Wichhart D, Kitchens ChL. Mechanical and Optical Properties of Polylactic Acid Films Containing Surfactant-Modified Cellulose Nanocrystals. J Nanomater 2018, Article ID 7124260, 12 pages. Orellana JL Wichhart D Kitchens ChL. Mechanical and Optical Properties of Polylactic Acid Films Containing Surfactant-Modified Cellulose Nanocrystals . J Nanomater 2018 , Article ID 7124260 , 12 pages. Search in Google Scholar

Wang Q, Ji Ch, Sun J, Zhu Q, Liu J. Structure and Properties of Polylactic Acid Biocomposite Films Reinforced with Cellulose Nanofibrils, Molecules 2020; 25: 3306. Wang Q Ji Ch Sun J Zhu Q Liu J. Structure and Properties of Polylactic Acid Biocomposite Films Reinforced with Cellulose Nanofibrils , Molecules 2020 ; 25 : 3306 . Search in Google Scholar

https://www.natureworksllc.com/technology-and-products/products https://www.natureworksllc.com/technology-and-products/products Search in Google Scholar

Lee JH, Park SH, Kim SH. Preparation of cellulose nanowhiskers and their reinforcing effect in polylactide. Macromol Res 2013; 21: 1218-1225. Lee JH Park SH Kim SH. Preparation of cellulose nanowhiskers and their reinforcing effect in polylactide . Macromol Res 2013 ; 21 : 1218 - 1225 . Search in Google Scholar

Arslan D, Vatansever E, Sarul DS, Kahraman Y, Gunes G, Durmus A, Nofar M. Effect of preparation method on the properties of polylactide/cellulose nanocrystal nanocomposites, Polymer Composites. 2020;1-11. Arslan D Vatansever E Sarul DS Kahraman Y Gunes G Durmus A Nofar M. Effect of preparation method on the properties of polylactide/cellulose nanocrystal nanocomposites , Polymer Composites . 2020 ; 1 - 11 . Search in Google Scholar

http://ifbb-knvb.wp.hs-hannover.de/db/files/downloads/TechnicalDataSheet_6201D_ fiber-melt-spinning_pdf_1430990927.pdf http://ifbb-knvb.wp.hs-hannover.de/db/files/downloads/TechnicalDataSheet_6201D_fiber-melt-spinning_pdf_1430990927.pdf Search in Google Scholar

Jóźwicka J, Gzyra-Jagieła K, Gutowska A, Twarowska-Schmidt K, Ciepliński M. Chemical Purity of PLA Fibres for Medical Devices. Fibres Text East Eur. 2012; 20: 135 —141. Jóźwicka J Gzyra-Jagieła K Gutowska A Twarowska-Schmidt K Ciepliński M. Chemical Purity of PLA Fibres for Medical Devices . Fibres Text East Eur . 2012 ; 20 : 135 - 141 . Search in Google Scholar

Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 2010; 3: 10. Park S Baker JO Himmel ME Parilla PA Johnson DK. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance . Biotechnol Biofuels 2010 ; 3 : 10 . Search in Google Scholar

Checchetto R, Rigotti D, Pegoretti A, Miotello A. Chloroform desorption from poly(lactic acid) nanocomposites: a thermal desorption spectroscopy study. Pure Appl Chem 2020; 92(3): 391-398. Checchetto R Rigotti D Pegoretti A Miotello A. Chloroform desorption from poly(lactic acid) nanocomposites: a thermal desorption spectroscopy study . Pure Appl Chem 2020 ; 92 ( 3 ): 391 - 398 . Search in Google Scholar

Ma B, Wang X, He Y, Dong Z, Zhang X, Chen X, Liu T. Effect of poly(lactic acid) crystallization on its mechanical and heat resistance performances Polymer 2021; 212: 123280. Ma B Wang X He Y Dong Z Zhang X Chen X Liu T. Effect of poly(lactic acid) crystallization on its mechanical and heat resistance performances Polymer 2021 ; 212 : 123280 . Search in Google Scholar

Luzi F, Fortunati E, Puglia D, Petrucci R, Kenny JM, Torre L. Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polym Degrad Stabil 2015; 121: 105-115. Luzi F Fortunati E Puglia D Petrucci R Kenny JM Torre L. Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica . Polym Degrad Stabil 2015 ; 121 : 105 - 115 . Search in Google Scholar

Hubbe MA, Lavoine N, Lucia LA, Dou C. Formulating bioplastic composites for biodegradability, recycling, and performance: A Review BioResources 16; 1 2021-2083. Hubbe MA Lavoine N Lucia LA Dou C. Formulating bioplastic composites for biodegradability, recycling, and performance: A Review BioResources 16 ; 1 2021 - 2083 . Search in Google Scholar

Trifol J, Plackett D, Szabo P, Daugaard AE, Baschetti MG. Effect of Crystallinity on Water Vapor Sorption, Diffusion, and Permeation of PLA-Based Nanocomposites. ACS Omega 2020; 5 (25): 15362-15369 Trifol J Plackett D Szabo P Daugaard AE Baschetti MG. Effect of Crystallinity on Water Vapor Sorption, Diffusion, and Permeation of PLA-Based Nanocomposites . ACS Omega 2020 ; 5 ( 25 ): 15362 - 15369 Search in Google Scholar

Gois G, Santos A, Hernandéz E, Medeiros E, Almeida Y. Biodegradation of PLA/CNC composite modified with nonionic surfactants. Polym. Bull. 2023; 80: 11363-11377. Gois G Santos A Hernandéz E Medeiros E Almeida Y. Biodegradation of PLA/CNC composite modified with nonionic surfactants . Polym. Bull . 2023 ; 80 : 11363 - 11377 . Search in Google Scholar

de Jong SJ, Arias ER, Rijkers DTS, van Nostrum CF, Kettenes-van den BoschJJ, Hennink WE. New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus, Polymer, 2001; 42 (7): 27952802. de Jong SJ Arias ER Rijkers DTS van Nostrum CF Kettenes-van den Bosch JJ Hennink WE. New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus , Polymer , 2001 ; 42 ( 7 ): 2795 - 2802 . Search in Google Scholar

Giełdowska M, Puchalski M, Sztajnowski S, Krucińska I. Evolution of the Molecular and Supramolecular Structures of PLA during the Thermally Supported Hydrolytic Degradation of Wet Spinning Fibers Macromolecules 2022; 55 (22): 10100-10112. Giełdowska M Puchalski M Sztajnowski S Krucińska I. Evolution of the Molecular and Supramolecular Structures of PLA during the Thermally Supported Hydrolytic Degradation of Wet Spinning Fibers Macromolecules 2022 ; 55 ( 22 ): 10100 - 10112 . Search in Google Scholar