1. bookVolume 29 (2021): Edition 4 (December 2021)
Détails du magazine
License
Format
Magazine
eISSN
1898-9934
Première parution
09 Jun 2008
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Duality Notions in Real Projective Plane

Publié en ligne: 09 Jul 2022
Volume & Edition: Volume 29 (2021) - Edition 4 (December 2021)
Pages: 161 - 173
Accepté: 30 Sep 2021
Détails du magazine
License
Format
Magazine
eISSN
1898-9934
Première parution
09 Jun 2008
Périodicité
4 fois par an
Langues
Anglais

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17. Ouvrir le DOISearch in Google Scholar

[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.604425130069070 Ouvrir le DOISearch in Google Scholar

[3] Anthony Bordg. Projective geometry. Archive of Formal Proofs, jun 2018. Search in Google Scholar

[4] David Braun. Approche combinatoire pour l’automatisation en Coq des preuves formelles en géométrie d’incidence projective. PhD thesis, Université de Strasbourg, 2019. Search in Google Scholar

[5] Ulrik Buchholtz and Egbert Rijke. The real projective spaces in homotopy type theory. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–8. IEEE, 2017.10.1109/LICS.2017.8005146 Search in Google Scholar

[6] Guillermo Calderón. Formalizing constructive projective geometry in Agda. Electronic Notes in Theoretical Computer Science, 338:61–77, 2018.10.1016/j.entcs.2018.10.005 Search in Google Scholar

[7] Roland Coghetto. Klein-Beltrami model. Part I. Formalized Mathematics, 26(1):21–32, 2018. doi:10.2478/forma-2018-0003. Ouvrir le DOISearch in Google Scholar

[8] Harold Scott Macdonald Coxeter. The real projective plane. Springer Science & Business Media, 1992. Search in Google Scholar

[9] Nikolai Vladimirovich Efimov. Géométrie supérieure. Mir, 1981. Search in Google Scholar

[10] Adam Grabowski. Tarski’s geometry modelled in Mizar computerized proof assistant. In Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11–14, 2016, pages 373–381, 2016. doi:10.15439/2016F290. Ouvrir le DOISearch in Google Scholar

[11] Robin Hartshorne. Foundations of projective geometry. Citeseer, 1967. Search in Google Scholar

[12] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces – part I. Formalized Mathematics, 1(4):767–776, 1990. Search in Google Scholar

[13] Nicolas Magaud, Julien Narboux, and Pascal Schreck. Formalizing projective plane geometry in Coq. In Automated Deduction in Geometry, pages 141–162. Springer, 2008.10.1007/978-3-642-21046-4_7 Search in Google Scholar

[14] Nicolas Magaud, Julien Narboux, and Pascal Schreck. A case study in formalizing projective geometry in Coq: Desargues theorem. Computational Geometry, 45(8):406–424, 2012. Search in Google Scholar

[15] Jürgen Richter-Gebert. Pappos’s Theorem: Nine Proofs and Three Variations, pages 3–31. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-17286-1. doi:10.1007/978-3-642-17286-1_1. Ouvrir le DOISearch in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo