Accès libre

The First Isomorphism Theorem and Other Properties of Rings

 et   
31 déc. 2014
À propos de cet article

Citez
Télécharger la couverture

Different properties of rings and fields are discussed [12], [41] and [17]. We introduce ring homomorphisms, their kernels and images, and prove the First Isomorphism Theorem, namely that for a homomorphism f : R → S we have R/ker(f) ≅ Im(f). Then we define prime and irreducible elements and show that every principal ideal domain is factorial. Finally we show that polynomial rings over fields are Euclidean and hence also factorial

Langue:
Anglais
Périodicité:
1 fois par an
Sujets de la revue:
Mathématiques, Mathématiques générales, Informatique, Informatique, autres