Accès libre

N-Dimensional Binary Vector Spaces

 et   
01 juin 2013
À propos de cet article

Citez
Télécharger la couverture

The binary set {0, 1} together with modulo-2 addition and multiplication is called a binary field, which is denoted by F2. The binary field F2 is defined in [1]. A vector space over F2 is called a binary vector space. The set of all binary vectors of length n forms an n-dimensional vector space Vn over F2. Binary fields and n-dimensional binary vector spaces play an important role in practical computer science, for example, coding theory [15] and cryptology. In cryptology, binary fields and n-dimensional binary vector spaces are very important in proving the security of cryptographic systems [13]. In this article we define the n-dimensional binary vector space Vn. Moreover, we formalize some facts about the n-dimensional binary vector space Vn.

Langue:
Anglais
Périodicité:
1 fois par an
Sujets de la revue:
Mathématiques, Mathématiques générales, Informatique, Informatique, autres