1. bookVolume 68 (2022): Edition 4 (December 2022)
Détails du magazine
License
Format
Magazine
eISSN
2454-0358
Première parution
14 Dec 2009
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Forest inventory based on canopy height model derived from airborne laser scanning data

Publié en ligne: 21 Oct 2022
Volume & Edition: Volume 68 (2022) - Edition 4 (December 2022)
Pages: 224 - 231
Détails du magazine
License
Format
Magazine
eISSN
2454-0358
Première parution
14 Dec 2009
Périodicité
4 fois par an
Langues
Anglais

Baty, F., Ritz, Ch., Charles, S., Brutsche, M., Flandrois, J. P., Delignette-Muller, M., 2015: A Toolbox for Nonlinear Regression in R Z The Package nlstools. Journal of Statistical Software, 66:1–21.10.18637/jss.v066.i05Search in Google Scholar

Cosenza, D., Soares, V., Leite, H., Gleriani, J., Amaral, C., Junior, J. et al., 2018: Airborne laser scanning applied to eucalyptus stand inventory at individual tree level. Pesquisa Agropecuaria Brasileira, 53:1373–1382.10.1590/s0100-204x2018001200010Search in Google Scholar

Deluzet, M., Erudel, T., Briottet, X., Sheeren, D., Fabre, S., 2022: Individual Tree Crown Delineation Method Based on Multi-Criteria Graph Using Geometric and Spectral Information: Application to Several Temperate Forest Sites. Remote Sensing, 14:1083.10.3390/rs14051083Search in Google Scholar

Díaz-Varela, R. A., González-Ferreiro, E., 2021: 3D Point Clouds in Forest Remote Sensing. Remote Sensing, 13:2999.10.3390/rs13152999Search in Google Scholar

Fay, M. P., Proschan, M. A., 2010: Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics Survey, 4:1–39.10.1214/09-SS051285773220414472Search in Google Scholar

Ginzler, C., Hobi, M. L., 2015: Countrywide Stereo-Image Matching for Updating Digital Surface Models in the Framework of the Swiss National Forest Inventory. Remote Sensing, 7:4343–4370.10.3390/rs70404343Search in Google Scholar

Goodbody, T. R. H., Coops, N. C., Luther, J. E., Tompalski, P., Mulverhill, C. F., Fournier, R. et al., 2021: Airborne laser scanning for quantifying criteria and indicators of sustainable forest management in Canada. Canadian Journal of Forest Research, 51:14.10.1139/cjfr-2020-0424Search in Google Scholar

Hill, A., Breschan, J., Mandallaz, D., 2014: Accuracy Assessment of Timber Volume Maps Using Forest Inventory Data and LiDAR Canopy Height Models. Forests, 5:2253–2275.10.3390/f5092253Search in Google Scholar

Jamru, L. R., 2018: Correction pit free canopy height model derived from LiDAR data for the broad leaf tropical forest. IOP Conference Series: Earth and Environmental Science, 169:012113.10.1088/1755-1315/169/1/012113Search in Google Scholar

Jiang, X., Li, G., Lu, D., Chen, E., Wei, X., 2020: Stratification-Based Forest Aboveground Biomass Estimation in a Subtropical Region Using Airborne Lidar Data. Remote Sensing, 12:1101.10.3390/rs12071101Search in Google Scholar

Kakoulaki, G., Martinez, A., Florio, P., 2021: Non-commercial Light Detection and Ranging (LiDAR) data in Europe. Luxembourg, Publications Office of the European Union, 35 p.Search in Google Scholar

Lamb, S. M., MacLean, D.A., Hennigar, C.R., Pitt, D.G, 2018: Forecasting Forest Inventory Using Imputed Tree Lists for LiDAR Grid Cells and a Tree-List Growth Model. Forests, 9: 167.10.3390/f9040167Search in Google Scholar

Lisiewicz, M., Kamińska, A., Kraszewski, B., Stereńczak, K., 2022: Correcting the Results of CHM-Based Individual Tree Detection Algorithms to Improve Their Accuracy and Reliability. Remote Sensing, 14: 1822.10.3390/rs14081822Search in Google Scholar

Liu, Q., Fu, L., Chen, Q., Wang, G., Luo, P., Sharma, R. P. et al., 2020: Analysis of the Spatial Differences in Canopy Height Models from UAV LiDAR and Photogrammetry. Remote Sensing, 12:2884.10.3390/rs12182884Search in Google Scholar

Madry, S., 2021: Introduction to QGIS: Open Source Geographic Information System. USA, Locate Press LLC, 219 p.Search in Google Scholar

Martins-Neto, R. P., Tommaselli, A. M. G., Imai, N. N., David, H. C., Miltiadou, M., Honkavaara, E., 2021: Identification of Significative LiDAR Metrics and Comparison of Machine Learning Approaches for Estimating Stand and Diversity Variables in Heterogeneous Brazilian Atlantic Forest. Remote Sensing, 13:2444.10.3390/rs13132444Search in Google Scholar

Mielcarek, M., Stereńczak, K., Khosravipour, A., 2018: Testing and evaluating different LiDAR-derived canopy height model generation methods for tree height estimation. International Journal of Applied Earth Observation and Geoinformation, 71:132–143.10.1016/j.jag.2018.05.002Search in Google Scholar

Murgaš, V., Sačkov, I., Sedliak, M., Tunák, D., Chudý F., 2018: Assessing horizontal accuracy of inventory plots in forests with different mix of tree species composition and development stage. Journal of Forest Science, 64:478–485.10.17221/92/2018-JFSSearch in Google Scholar

Novo-Fernández, A., Barrio-Anta, M., Recondo, C., Cámara-Obregón, A., López-Sánchez, C. A., 2019: Integration of National Forest Inventory and Nationwide Airborne Laser Scanning Data to Improve Forest Yield Predictions in North-Western Spain. Remote Sensing, 11:1693.10.3390/rs11141693Search in Google Scholar

Petráš, R., Pajtík, J., 1991: Sústava česko-slovenských objemových tabuliek drevín. Lesnícky časopis, 37:49–56.Search in Google Scholar

Polidori, L., El Hage, M., 2020: Digital Elevation Model Quality Assessment Methods – A Critical Review. Remote Sensing, 12:3522.10.3390/rs12213522Search in Google Scholar

Sačkov, I., Kulla, L., Bucha, T., 2019a. A Comparison of Two Tree Detection Methods for Estimation of Forest Stand and Ecological Variables from Airborne LiDAR Data in Central European Forests. Remote Sensing, 11:1431.10.3390/rs11121431Search in Google Scholar

Sačkov, I., Scheer, L., Bucha, T., 2019b. Predicting forest stand variables from airborne LiDAR data using a tree detection method in Central European forests. Central European Forestry Journal, 65:191–197.10.2478/forj-2019-0014Search in Google Scholar

Surový, P., Kuželka, K., 2019: Acquisition of Forest Attributes for Decision Support at the Forest Enterprise Level Using Remote-Sensing Techniques - A Review. Forests, 10:273.10.3390/f10030273Search in Google Scholar

Vauhkonen, J., Maltamo, M., McRoberts, R. E., Næsset, E., 2014: Introduction to forestry applications of airborne laser scanning. In: Maltamo, M., Næsset, E., Vauhkonen, J. (eds.): Forestry Application of Airborne Laser Scanning: Concept and Case Studies. Springer Netherlands: Dordrecht, The Netherlands, p. 1–16.10.1007/978-94-017-8663-8_1Search in Google Scholar

Versace, S., Gianelle, D., Frizzera, L., Tognetti, R., Garfì, V., Dalponte, M., 2019: Prediction of Competition Indices in a Norway Spruce and Silver Fir-Dominated Forest Using Lidar Data. Remote Sensing, 11:2734.10.3390/rs11232734Search in Google Scholar

Voght, W. P., Johnson, R. B., 2012: Correlation and Regression Analysis. USA, SAGE Publications Ltd, 1632 p.10.4135/9781446286104Search in Google Scholar

Wang, H., Seaborn, T., Wang, Z., Caudill, Ch., Link, T., 2021: Modeling tree canopy height using machine learning over mixed vegetation landscapes. International Journal of Applied Earth Observation and Geoinformation, 101:102353.10.1016/j.jag.2021.102353Search in Google Scholar

Zhang, Z., Cao, L., She, G., 2017: Estimating Forest Structural Parameters Using Canopy Metrics Derived from Airborne LiDAR Data in Subtropical Forests. Remote Sensing, 9:940.10.3390/rs9090940Search in Google Scholar

Zhang, W., Cai, S., Liang, X., Shao, J., Hu, R., Yu, S. et al., 2020: Cloth simulation-based construction of pit-free canopy height models from airborne LiDAR data. Forest Ecosystems, 7:1–13.10.1186/s40663-019-0212-0Search in Google Scholar

Zhao, J., Zhao, L., Chen, E., Li, Z., Xu, K., Ding, X., 2022: An Improved Generalized Hierarchical Estimation Framework with Geostatistics for Mapping Forest Parameters and Its Uncertainty: A Case Study of Forest Canopy Height. Remote Sensing, 14:568.10.3390/rs14030568Search in Google Scholar

Zhen, Z., Quackenbush, L. J., Zhang, L., 2016: Trends in Automatic Individual Tree Crown Detection and Delineation – Evolution of LiDAR Data. Remote Sensing, 8:333.10.3390/rs8040333Search in Google Scholar

QGIS Development Team, 2022: QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org.Search in Google Scholar

R Core Team, 2021: R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org.Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo