À propos de cet article


We focus on the analysis of sap flow and stem circumference changes in European beech (Fagus sylvatica, L.) in relation to available soil water and weather conditions during the growing seasons 2012 and 2013. The objective was to examine how soil water potential affects growth and transpiration of a mature beech stand situated at the lower distributional limit of beech in Slovakia. To be able to evaluate beech response to soil water shortage, we irrigated a group of 6 trees during the period of pronounced drought, while the control group of other 6 trees remained exposed to actual weather conditions. Mean air temperatures of both seasons were considerably above the long-term average and the temporal pattern of precipitation differed between the years. During the whole growing season 2012, beech samples transpired an average volume of 6.9 m3 of water in the control and 7.7 m3 in the irrigated group. A slightly higher average volume was found in the growing season 2013 under both treatments (7.7 m3 in control and 10.5 m3 in irrigated trees). In the drought period 2012, when the irrigation experiment was commenced, the sap flow in the control group was reduced by 30% as compared with the irrigated group. In 2013, a 38.1% difference in sap flow was observed between the groups. Sap flow in the non-irrigated trees decreased with reducing soil moisture, and ceased at soil water potential -0.6 MPa. In both treatments and years, we found significant correlations between hourly sap flow and investigated weather variables. A reduction in stem circumferences of the control trees, which was observed during stem shrinkage phase, was up to 19% in 2012 and 10% in 2013. We conclude that stem circumference shrinkage during the peak of soil drought was induced by the cessation in the sap flow process.

4 fois par an
Sujets de la revue:
Life Sciences, Plant Science, Ecology, other