[
Abarenkov, K., Zirk, A., Piirmann, T., Pöhönen, R., Ivanov, F., Nilsson, R.H., Kõljalg, U., 2023. UNITE general FASTA release for eukaryotes. Version 18.07.2023. UNITE Community. https://doi.org/10.15156/BIO/2938069
]Search in Google Scholar
[
Aguiar, M., Conway, A.J., Bell, J.K., Stewart, K.J., 2023. Agroecosystem edge effects on vegetation, soil properties, and the soil microbial community in the Canadian prairie. Plos ONE, 18 (4): e0283832. https://doi.org/10.1371/journal.pone.0283832
]Search in Google Scholar
[
Ahmadpour, S.A., Mehrabi-Koushki, M., Farokhinejad, R., Asgari, B., 2022. New species of the family Didymellaceae in Iran. Mycological Progress, 21 (2): 28. https://doi.org/10.1007/s11557-022-01800-5
]Search in Google Scholar
[
Alvidrez-Villarreal, R., Hernández-Castillo, F.D., Garcia-Martínez, O., Mendoza-Villarreal, R., Rodríguez-Herrera, R., Aguilar, C.N., 2012. Isolation and pathogenicity of fungi associated to ambrosia borer (Euplatypus segnis) found injuring pecan (Carya illinoen- sis) wood. Agricultural Sciences, 3: 405–416. DOI:10.4236/as.2012.33048
]Search in Google Scholar
[
Andersen, K.S., Kirkegaard, R.H., Karst, S.M., Albertsen, M., 2018. ampvis2: an R package to analyse and visualize 16S rRNA amplicon data. BioRxiv, 299537. https://doi.org/10.1101/299537
]Search in Google Scholar
[
Andrades, M., 2012. Prácticas de edafología y climatología [Soil science and climatology]. 2nd ed. Universidad de la Rioja, Servicio de publicaciones. [cit. 2024-12-03]. https://www.agapea.com/M-Andrades-Rodriguez/Practicas-de-Edafologia-y-Climatologia-9788488713278-i.htm. (In Spanish).
]Search in Google Scholar
[
Anslan, S., Bahram, M., Hiiesalu, I., Tedersoo, L., 2017. PipeCraft: flexible open‐source toolkit for bioinformatics analysis of custom high‐throughput amplicon sequencing data. Molecular Ecology Resources, 17 (6): e234-e240. https://doi.org/10.1111/1755-0998.12692
]Search in Google Scholar
[
Bennett, A. E., Groten, K., 2022. The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annual Review of Plant Biology, 73 (1): 649–672. https://doi.org/10.1146/annurev-arplant-102820-124504
]Search in Google Scholar
[
Blincoe, K., Harrison, F., Damian, D., 2015. Ecosystems in GitHub and a method for ecosystem identification using reference coupling. In 2015 IEEE/ACM 12th working conference on mining software repositories. Florence, Italy, 16-17 May 2015. Piscataway: IEEE, p. 202–211. DOI: 10.1109/MSR.2015.26
]Search in Google Scholar
[
Bremner, J.M., 1965. Total nitrogen. Methods of soil analysis: part 2 Chemical and microbiological properties. Number 9 in Series Agronomy. Madison: American Society of Agronomy Inc., p. 1149–1178.
]Search in Google Scholar
[
Cabrera-Rodríguez, Nava-Reyna, E., Trejo-Calzada, R., García-De la Peña, C., Arreola-Ávila, J.G., Collavino, M.M., Constante-García, V., 2020. Effect of organic and conventional systems used to grow pecan trees on diversity of soil microbiota. Diversity, 12 (11): 436. https://doi.org/10.3390/d12110436
]Search in Google Scholar
[
Casas , R., 2012. El suelo de cultivo y las condiciones climáticas [Crop soil and climatic conditions]. Madrid: Parainfo. 235 p. (In Spanish).
]Search in Google Scholar
[
Chen, T., Wang, S., Jiang, X., Huang, Y., Mo, M., Yu, Z., 2023. New species of Didymellaceae within aquatic plants from southwestern China. Journal of Fungi, 9 (7): 761. https://doi.org/10.3390/jof9070761
]Search in Google Scholar
[
Chimal-Sánchez, E., Senés-Guerrero, C., Varela, L., Montaño, N.M., García-Sánchez, R., Pacheco, A., Montaño-Arias, S.A., Camargo-Ricalde, S.L., 2020. Septoglomus mexicanum, a new species of arbuscular mycorrhizal fungi from semiarid regions in Mexico. Mycologia, 112 (1): 121–132. https://doi.org/10.1080/00275514.2019.1671147
]Search in Google Scholar
[
Colombo, R.P., Recchi, M., Silvani, V.A., Pérgola, M., Martínez, A., Godeas, A.M., 2018. Detection of arbuscular mycorrhizal fungi associated with pecan (Carya illinoinensis) trees by molecular and morphological approaches. MycoKeys, 42: 73–88. https://doi.org/10.3897/mycokeys.42.26118
]Search in Google Scholar
[
Delgado-Baquerizo, Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Singh, B.K., 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7 (1): 10541. https://doi.org/10.1038/ncomms10541
]Search in Google Scholar
[
Eslaminejad, P., Heydari, M., Kakhki, F.V., Mirab-Balou, M., Omidipour, R., Muñoz-Rojas, M., Lucas-Borja, M.E., 2020. Plant species and season influence soil physicochemical properties and microbial function in a semi-arid woodland ecosystem. Plant and Soil, 456: 43–59. https://doi.org/10.1007/s11104-020-04691-1
]Search in Google Scholar
[
Ginestet, C., 2011. ggplot2: elegant graphics for data analysis. Journal of the Royal Statistical Society Series A: Statistics in Society, 174 (1): 245–246. https://doi.org/10.1111/j.1467-985X.2010.00676_9.x
]Search in Google Scholar
[
Gkisakis, V., Volakakis, N., Kollaros, D., Bàrberi, P., Kabourakis, E.M., 2016. Soil arthropod community in the olive agroecosystem: determined by environment and farming practices in different management systems and agroecological zones. Agriculture, Ecosystems and Environment, 218: 178–189. https://doi.org/10.1016/j.agee.2015.11.026
]Search in Google Scholar
[
Gryzenhout, M., Khooa, B., Landman, L., 2016. First report of Fusarium boothii from pecan (Carya illinoinensis) and camel thorn (Vachellia erioloba) trees in South Africa. South African Journal of Botany, 105: 158–162.
]Search in Google Scholar
[
Guerrero-Galán, C., Calvo-Polanco, M., Zimmermann, S.D., 2019. Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions. Mycorrhiza, 29: 291– 301. https://doi.org/10.1007/s00572-019-00894-2
]Search in Google Scholar
[
Huang, W., van Bodegom, P. M., Declerck, S., Heinonsalo, J., Cosme, M., Viskari, T., Soudzilovskaia, N. A., 2022. Mycelium chemistry differs markedly between ectomycorrhizal and arbuscular mycorrhizal fungi. Communications Biology, 5 (1): 398. https://doi.org/10.1038/s42003-022-03341-9
]Search in Google Scholar
[
Hudson, O., Buchholz, M., Doyle, V., Sundue, M.A., 2019. Multilocus phylogeny of Acrospermaceae: new epibiotic species and placement of Gonatophragmium, Pseudovirgaria, and Phaeodactylium anamorphs. Mycologia, 111 (6): 1041–1055. https://doi.org/10.1080/00275514.2019.1668905
]Search in Google Scholar
[
INIFAP (Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias), 2002. Tecnología de producción en nogal pecanero [Pecan nut production technology]. Ciudad de México: CELALA-CIRNOC-INI FAP. (In Spanish).
]Search in Google Scholar
[
Johnson, B.L., Haddad, N.M., 2011. Edge effects, not connectivity, determine the incidence and development of a foliar fungal plant disease. Ecology, 92 (8): 1551–1558. https://doi.org/10.1890/10-1072.1
]Search in Google Scholar
[
Keirnan, Tan, Y.P., Laurence, M.H., Mertin, A.A., Liew, E.C., Summerell, B.A., Shivas, R.G., 2021. Cryptic diversity found in Didymellaceae from Australian native legumes. MycoKeys, 78: 1–20. DOI: 10.3897/mycokeys.78.60063
]Search in Google Scholar
[
Kreitzman, M., 2020. Perennial agriculture: agronomy and environment in long-lived food systems. PhD thesis. University of British Columbia. 283 p.
]Search in Google Scholar
[
Larsson, E., Campo, E., Carbone, M., 2014. Hygrophorus exiguus, a new species in subgenus Colorati section Olivaceoumbrini, subsection Tephroleuci. Karstenia, 54 (2): 41–48.
]Search in Google Scholar
[
Legeay, M., Doncheva, N.T., Morris, J.H., Jensen, L.J., 2020. Visualize omics data on networks with Omics Visualizer, a Cytoscape App. F1000Research, 9: 157. https://doi.org/10.12688/f1000research.22280.2
]Search in Google Scholar
[
Luján Soto, R., Martínez-Mena, M., Cuéllar Padilla, M., De Vente, J., 2021. Restoring soil quality of woody agroecosystems in Mediterranean drylands through regenerative agriculture. Agriculture, Ecosystems and Environment, 306: 107191. https://doi.org/10.1016/j.agee.2020.107191
]Search in Google Scholar
[
Ma, Y., Dias, M.C., Freitas, H., 2020. Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science, 11: 591911. https://doi.org/10.3389/fpls.2020.591911
]Search in Google Scholar
[
Ma, W-Y., Wu, Q.-S.,., Xu, Y.-J., Kuča, K., 2021. Exploring mycorrhizal fungi in walnuts with a focus on physiological roles. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49 (2): 12363. https://doi.org/10.15835/nbha49212363
]Search in Google Scholar
[
Madriz-Valdovinos, Coronado, M.L., Raymundo, T., Gutiérrez, A., Flores, M. S., Esqueda, M. 2022. Pezizales (Ascomycota) associated with pine-oak forest in Yécora, Sonora, Mexico. Acta Botanica Mexicana, 129. https://doi.org/10.21829/abm129.2022.2083
]Search in Google Scholar
[
McMurdie, P.J., Holmes, S., 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS ONE, 8 (4): e61217. https://doi.org/10.1371/journal.pone.0061217
]Search in Google Scholar
[
Medel, R., Castillo, R., Marmolejo, J., Baeza, Y., 2013. Análisis de la familia Pezizaceae (Pezizales: Ascomycota) en México [Analysis of the family Pezizaceae (Pezizales: Ascomycota) in Mexico]. Revista Mexicana de Biodiversidad, 84: S21-S38. https://doi.org/10.7550/rmb.31741. (In Spanish).
]Search in Google Scholar
[
Melo, C., Walker, C., Krüger, C., Borges, P.A., Luna, S., Mendonça, D., Machado, A.C., 2019. Environmental factors driving arbuscular mycorrhizal fungal communities associated with endemic woody plant Picconia azo-rica on native forest of Azores. Annals of Microbiology, 69: 1309–1327. https://doi.org/10.1007/s13213-019-01535-x
]Search in Google Scholar
[
Nguyen, N.H., Song, Z., Bates, S.T., Branco, S., Tedersoo, L., Menke, J., Schilling, J.S., Kennedy, P.G., 2016. FUN-Guild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20: 241–248. https://doi.org/10.1016/j.funeco.2015.06.006
]Search in Google Scholar
[
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Oksanen, M.J., 2013. Package ‘vegan’. Community ecology package, version 2 (9), p. 1–295.
]Search in Google Scholar
[
Palmer, J.M., Lindner, D.L., Volk, T.J., 2008. Ectomycorrhizal characterization of an American chestnut (Castanea dentata)-dominated community in Western Wisconsin. Mycorrhiza, 19: 27–36. https://doi.org/10.1007/s00572-008-0200-7
]Search in Google Scholar
[
Poletto, T., Muniz, M.F.B., Fantinel, V.S., Harakava, R., Rolim, J.M., 2020. Characterization and pathogenicity of Fusarium oxysporum associated with Carya illinoinensis seedlings. Floresta e Ambiente, 27: e20171089. https://doi.org/10.1590/2179-8087.108917
]Search in Google Scholar
[
Porensky, L.M., Young, 2013. Edge‐effect interactions in fragmented and patchy landscapes. Conservation Biology, 27 (3): 509–519.
]Search in Google Scholar
[
Rivera-Urbalejo, Vazquez-Sandoval, D., Fernández-Vázquez, J.L., Rosete-Enríquez, M., Cesa-Luna, C., Morales-García, Y.E., Quintero-Hernández, V., 2021. Aportes y dificultades de la metagenómica de suelos y su impacto en la agricultura [Contributions and difficulties of soil metagenomics and its impact on agriculture]. Acta Biológica Colombiana, 26 (3): 449–461. https://doi.org/10.15446/abc.v26n3.85760. (In Spanish).
]Search in Google Scholar
[
Rodríguez, M.A., 1996. Prácticas de edafología y climatología [Practice of soil science and climatology]. Universidad de la Rioja. Servicio de publicaciones. 79 p. (In Spanish).
]Search in Google Scholar
[
Rudawska, M., Kujawska, M., Leski, T., Janowski, D., Karliński, L., Wilgan, R., 2019. Ectomycorrhizal community structure of the admixture tree species Betula pendula, Carpinus betulus, and Tilia cordata grown in bare-root forest nurseries. Forest Ecology and Management, 437: 113–125. https://doi.org/10.1016/j.foreco.2019.01.009
]Search in Google Scholar
[
Sánchez-Ledesma J., Garibay-Orijel, R., Guevara-Guerrero, G., Ávila-Rodríguez, V., Arreola-Ávila, J.G., 2023. Macromicetos asociados con Carya illinoinensis en La Comarca Lagunera, México [Macromycetes associated with Carya illinoinensis in La Comarca Lagunera, Mexico]. Revista Mexicana de Biodiversidad, 94: e944074-e944074. https://doi.org/10.22201/ib.20078706e.2023.94.4074. (In Spanish).
]Search in Google Scholar
[
Schmidt, M., 2019. Fragmentation of landscapes: modelling ecosystem services of transition zones. PhD thesis. Universität Potsdam, Potsdam. https://doi.org/10.25932/publishup-44294
]Search in Google Scholar
[
Sharma, S., Singh, P., Chauhan, S., Choudhary, O.P., 2022. Landscape position and slope aspects impacts on soil organic carbon pool and biological indicators of a fragile ecosystem in high-altitude cold arid region. Journal of Soil Science and Plant Nutrition, 22 (2): 2612–2632. https://doi.org/10.1007/s42729-022-00831-x
]Search in Google Scholar
[
Shi, J.W., Lu, L.X., Shi, H.M., Ye, J.R., 2022. Effects of plant growth-promoting rhizobacteria on the growth and soil microbial community of Carya illinoinensis. Current Microbiology, 79 (11: 352.
]Search in Google Scholar
[
Talbot, J.M., Bruns, T.D., Smith, D.P., Branco, S., Glassman, S.I., Erlandson, S., Peay, K.G., 2014. Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Biology and Biochemistry, 57: 282–291. https://doi.org/10.1016/j.soilbio.2012.10.004
]Search in Google Scholar
[
Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N.S., Wijesundera, R., Abarenkov, K., 2014. Global diversity and geography of soil fungi. Science, 346 (6213): 1256688. DOI: 10.1126/science.1256688
]Search in Google Scholar
[
Tedersoo, L., Bahram, M., Zobel, M., 2020. How mycorrhizal associations drive plant population and community biology. Science, 367 (6480): eaba1223. DOI: 10.1126/science.aba1223
]Search in Google Scholar
[
Viglizzo, E.F., Roberto, Z.E., Filippin, M.C., Pordomingo, A.J., 1995. Climate variability and agroecological change in the Central Pampas of Argentina. Agriculture, Ecosystems and Environment, 55 (1): 7–16. https://doi.org/10.1016/0167-8809(95)00608-U
]Search in Google Scholar
[
Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37 (1): 29–38.
]Search in Google Scholar
[
Wei, T., Simko, V.R., 2021. package “corrplot”: Visualization of a Correlation Matrix (Version 0.92). Package Corrplot for R Software.
]Search in Google Scholar
[
Wei, H., He, X., Riccardo, B., Yang, Y., Yuan, Z., 2021. Stagonosporopsis rhizophilae sp. nov. (Didymellaceae, Pleosporales), a new rhizospheric soil fungus associated with Populus deltoides Marsh. Phytotaxa, 491 (1): 23–34. https://doi.org/10.11646/phytotaxa.491.1.3
]Search in Google Scholar
[
Wickham, H., 2023. dplyr: A grammar of data manipulation. R package version 04.3., p156.
]Search in Google Scholar
[
Yang, C., Liu, N., Zhang, Y., 2019. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma, 337: 444–452. https://doi.org/10.1016/j.geoderma.2018.10.002
]Search in Google Scholar
[
Yang, C., Sun, J., 2020. Soil salinity drives the distribution patterns and ecological functions of fungi in saline-alkali land in the Yellow River Delta, China. Frontiers in Micro-biology, 11: 594284. https://doi.org/10.3389/fmicb.2020.594284
]Search in Google Scholar
[
Zeng, Q., Lebreton, A., Auer, L., Man, X., Jia, L., Wang, G., Gong, S., Sai, W., Lombard, V., Buée, M., Wu, G., Dai, Y., Yang, Z., Martin, F.M., 2023. Stable functional structure despite high taxonomic variability across fungal communities in soils of old-growth montane forests. Microbiome, 11 (1): 217. https://doi.org/10.1186/s40168-023-01650-7
]Search in Google Scholar
[
Zhang, C., Yang, C., Cai, F., Ma, T., Wei, L., Jin, M., Wang, Y., Qi, N., 2024. Occurrence and identification of two Nothophoma species causing branch canker and leaf brown spot of walnut in China. Canadian Journal of Plant Pathology, 46: 367–377. https://doi.org/10.1080/07060661.2024.2317897
]Search in Google Scholar
[
Zhang, K., Zentella, R., Burkey, K.O., Liao, H.L., Tisdale, R.H., 2023. Microbial community dynamics responding to nutrient allocation associated with soybean cultivar ‘Jake’ ozone adaptation. Science of the Total Environment, 864: 161008. https://doi.org/10.1016/j.scitotenv.2022.161008
]Search in Google Scholar