[
Abbasi, S., Jaafarzadeh, N., Zahedi, A., Ravanbakhsh, M., Abbaszadeh, S., Turner, A., 2023. Microplastics in the atmosphere of Ahvaz City, Iran. Journal of Environmental Sciences, 126: 95–102. https://doi.org/10.1016/j.jes.2022.02.044
]Search in Google Scholar
[
Abbasi, S., Keshavarzi, B., Moore, F., Delshab, H., Soltani, N., Sorooshian, A., 2017. Investigation of microrubbers, microplastics and heavy metals in street dust: a study in Bushehr city, Iran. Environmental Earth Sciences, 76: 798. https://doi.org/10.1007/s12665-017-7137-0
]Search in Google Scholar
[
Allen, S., Allen, D., Phoenix, V.R., Leroux, G., Jiménez, P.D., Simonneau, A., Binet, S., Galop, D., 2019. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12: 339–344. https://doi.org/10.1038/s41561-019-0335-5
]Search in Google Scholar
[
Almeida, C.C.S., Barreto, T.N.A., De Souza Lira, E.B., Lorena, E.M.G., Santos, I.G.S., Bezerra, A.P.X.G., 2017. Bioindicators of air quality species|Bioindicadores de espécies de qualidade do ar. Revista Geama, 3 (2): 94–102.
]Search in Google Scholar
[
Bonvecchi, V.E, Serafini, M.C, Zuleta, G., 2006. Fragmentación del paisaje en el partido de Luján, provincia de Buenos Aires: patrones y procesos [Landscape fragmentation in the Luján district, Buenos Aires province: patterns and processes]. Selper, 23: 58–72 (In Spanish).
]Search in Google Scholar
[
Cai, L., Wang, J., Peng, J., Tan, Z., Zhan, Z., Tan, X., Chen, Q., 2017. Characteristics of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. Environmental Science and Pollution Research, 24 (32): 24928–24935. https://doi.org/10.1007/s11356-017-0116-x
]Search in Google Scholar
[
Çobanoğlu, G., Özen, E., 2024. Detection of atmospheric microplastics accumulated in Xanthoria parietina: a lichen biomonitoring study on the Asian side of Istanbul. International Journal of Environmental Research, 18 (4): 65. https://doi.org/10.1007/s41742-024-00596-4
]Search in Google Scholar
[
Conti, M.E., Cecchetti, G., 2001. Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environmental Pollution, 114 (3): 471–492. https://doi.org/10.1016/S0269-7491(00)00224-4
]Search in Google Scholar
[
Dris, R., Gasperi, J., Saad, M., Mirande, C., Tassin, B., 2016. Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Marine Pollution Bulletin, 104 (1-2): 290–293. https://doi.org/10.1016/j.marpolbul.2016.01.006
]Search in Google Scholar
[
Estrabou, C., Filippini, E., Soria, J.P., Schelotto, G., Rodríguez, J.M., 2011. Air quality monitoring system using lichens as bioindicators in Central Argentina. Environmental Monitoring and Assessment, 182 (1-4): 375–383. https://doi.org/10.1007/s10661-011-1882-4
]Search in Google Scholar
[
García, R., Gollo, M., Villagra, E., Gomez, J., 2023. Especies de hongos liquenizados asociadas a diferentes usos de suelo en el partido de Luján (Provincia de Buenos Aires, Argentina) [Lichenized fungal species associated with different land uses in the Luján district (Buenos Aires Province, Argentina)]. Revista del Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, 25 (2): 165–175. DOI: 10.22179/REVMACN.25.780
]Search in Google Scholar
[
Gascon, C.N., Almazol, A.E., Garcia, R.C., Vitoriano, M.M., 2023. Diversity and spatial distribution of native bees in Mt. Banahaw de Lucban, Philippines. Folia Oecologica, 50 (1): 44–54. https://doi.org/10.2478/foecol-2023-0003
]Search in Google Scholar
[
Gilbert, O., 1980. Effect of land-use on terricolous lichens. The Lichenologist, 12 (1): 117–124. DOI: 10.1017/S0024282980000047
]Search in Google Scholar
[
Gollo, M., Villagra, E., Gomez, J., 2024. Evaluación de la contaminación por microplásticos en el liquen Candelaria concolor (Dicks) Arnold, 1879: un estudio de caso sobre el Efecto de la Ruralidad [Assessing microplastic contamination in the lichen Candelaria concolor (Dicks) Arnold, 1879: a case study on the Rurality Effect]. Revista del Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, 26 (2): 147–154. DOI: 10.22179/REVMACN.26.848
]Search in Google Scholar
[
Gollo, M.S., Rodríguez, J.M., Pighín, A.F., Villagra, E., Ferro, J., Gomez, J.J., 2023. Micro y mesoplásticos en la infusión “té de la piedra” [Micro and mesoplastics in “stone tea” infusion]. Glalia. Revista Electrónica del Grupo Latinoamericano de Liquenólogos, 9 (1): 35–44.
]Search in Google Scholar
[
Gomez, J., Nistal, A., Villagra, E., Detteler, M.A., Vazquez, F.A., 2023. First record of Hyperphyscia coralloides (L.) Scutari growing on PET plastic within a fruit crops plot and its implications. Folia Oecologica, 50 (2): 204–206. https://doi.org/10.2478/foecol-2023-0019
]Search in Google Scholar
[
Gomez, J., Pighin, A., Gollo, M., Nistal, A., Villagra, E., 2023. Primera aproximación experimental referente a la acumulación y deposición de microplásticos en líquenes [First experimental approach regarding the accumulation and deposition of microplastics in lichens]. Revista Internacional de Contaminación Ambiental, 39: 557–567. https://doi.org/10.20937/RICA.54843
]Search in Google Scholar
[
Herrera, A., Garrido-Amador, P., Martínez, I., Samper, M. D., López-Martínez, J., Gómez, M., Packard, T.T., 2018. Novel methodology to isolate microplastics from vegetal-rich samples. Marine Pollution Bulletin, 129 (1): 61–69. https://doi.org/10.1016/j.marpolbul.2018.02.015
]Search in Google Scholar
[
Huang, X., Chen, Y., Meng, Y., Liu, G., Yang, M., 2022. Are we ignoring the role of urban forests in intercepting atmospheric microplastics? Journal of Hazardous Materials, 436: 129096. https://doi.org/10.1016/j.jhazmat.2022.129096.
]Search in Google Scholar
[
Huang, Y., Liu, Q., Jia, W., Yan, C., Wang, J., 2020. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environmental Pollution, 260: 114096.
]Search in Google Scholar
[
Jafarova, M., Contardo, T., Aherne, J., Loppi, S., 2022. Lichen biomonitoring of airborne microplastics in Milan (N Italy). Biology, 11 (12): 1815. https://doi.org/10.3390/biology11121815
]Search in Google Scholar
[
Jasan, R.C., Verburg, T.G., Wolterbeek, H.T., Plá, R.R., Pignata M.L., 2004. On the use of the lichen Ramalina celastri (Spreng.) Krog. & Swinsc. as an indicator of atmospheric pollution in the province of Córdoba, Argentina, considering both lichen physiological parameters and element concentrations. Journal of Radio-analytical and Nuclear Chemistry, 259 (1): 93–97. https://doi.org/10.1023/B:JRNC.0000015812.46333.41
]Search in Google Scholar
[
Käffer, M.I, De Azevedo Martins, S.M., Alves, C., Pereira, V.C., Fachel, J., Vargas, V.M.F., 2011. Corticolous lichens as environmental indicators in urban areas in southern Brazil. Ecological Indicators, 11 (5): 1319–1332. https://doi.org/10.1016/j.ecolind.2011.02.006
]Search in Google Scholar
[
Khodabakhshloo, N., Abbasi, S., Oleszczuk, P., Turner, A., 2024. Biomonitoring of airborne microplastics and microrubbers in Shiraz, Iran, using lichens and moss. Environmental Geochemistry and Health, 46: 244. https://doi.org/10.1007/s10653-024-01977-6
]Search in Google Scholar
[
Land Use Code, 2019. Luján, Bs. As., Argentina. [cit. 2024-03-05]. http://www.lujan.gob.ar/wp-content/uploads/2019/12/COU_WEB.pdf
]Search in Google Scholar
[
Lares, M., Ncibi, M.C., Sillanpää, Ma., Sillanpää, M., 2019. Intercomparison study on commonly used methods to determine microplastics in wastewater and sludge samples. Environmental Science and Pollution Research, 26: 12109–12122. https://doi.org/10.1007/s11356-019-04584-6
]Search in Google Scholar
[
Lato, K.A., Thorne, L.H., Fuirst, M., Brownawell, B.J., 2021. Microplastic abundance in gull nests in relation to urbanization. Marine Pollution Bulletin, 164: 112058. https://doi.org/10.1016/j.marpolbul.2021.112058
]Search in Google Scholar
[
Lloret, J., Pedrosa-Pamies, R., Vandal, N., Rorty, R., Ritchie, M., McGuire, C., Valiela, I., 2021. Salt marsh sediments act as sinks for microplastics and reveal effects of current and historical land use changes. Environmental Advances, 4: 100060. https://doi.org/10.1016/j.envadv.2021.100060
]Search in Google Scholar
[
Loppi, S., Roblin, B., Paoli, L., Aherne, J., 2021. Accumulation of airborne microplastics in lichens from a landfill dumping site (Italy). Scientific Reports, 11 (1): 1–5. https://doi.org/10.1038/s41598-021-84251-4
]Search in Google Scholar
[
Lusher, A.L., Welden, N.A., Sobral, P., Cole, M., 2020. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. In Analysis of nanoplastics and microplastics in food. CRC Press, p. 119–148.
]Search in Google Scholar
[
Masura, J., Baker, J.E., Foster, G.D., Arthur, C., Herring, C., 2015. Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum, NOS-OR&R48. Silver Spring: NOAA Marine Debris Division. 31 p.
]Search in Google Scholar
[
Mateos, A.C., González, C.M., 2016. Physiological response and sulfur accumulation in the biomonitor Ramalina celastri in relation to the concentrations of SO2 and NO2 in urban environments. Microchemical Journal, 125: 116–123. https://doi.org/10.1016/j.microc.2015.11.025
]Search in Google Scholar
[
O’brien, S., Rauert, C., Ribeiro, F., Okoffo, E.D., Burrouws, S.D., O’brien, J.W., Xianyu, W., Wright, S.L., Thomas, K.V., 2023. There’s something in the air: a review of sources, prevalence and behaviour of microplastics in the atmosphere. Science of the Total Environment, 874: 162193. https://doi.org/10.1016/j.scitotenv.2023.162193
]Search in Google Scholar
[
Pedreira, P.A, Penon, E., Borgnia M., 2017. Descortezado en forestales producido por la ardilla introducida Callosciurus erythraeus (Sciuridae) en Argentina [Bark stripping caused by the introduced squirrel Callosciurus erythraeus (Sciuridae) in Argentina]. Bosque (Valdivia), 38 (2): 415–420. DOI:10.4067/s0717-92002017000200019
]Search in Google Scholar
[
Peng, J., Wang, J., Cai, L., 2017. Current understanding of microplastics in the environment: occurrence, fate, risks, and what we should do. Integrated Environmental Assessment and Management, 13 (3): 476–482. https://doi.org/10.1002/ieam.1912
]Search in Google Scholar
[
Pignata, M.L., González, C.M., Wannaz, E.D., Carreras, H.A., Gudiño, G.L., Martínez, M.S., 2004. Biomonitoring of air quality employing in situ Ramalina celastri in Argentina. International Journal of Environmental Pollution, 22 (4): 409–429. https://doi.org/10.1504/IJEP.2004.005678
]Search in Google Scholar
[
Pinho, P., Bergamini, A., Carvalho, P., Branquinho, C., Stofer, S., Schidegger, C., Máguas C., 2012. Lichen functional groups as ecological indicators of the effects of land-use in Mediterranean ecosystems. Ecological Indicators, 15 (1): 36–42. https://doi.org/10.1016/j.ecolind.2011.09.022
]Search in Google Scholar
[
Roblin, B., Aherne, J., 2020. Moss as a biomonitor for the atmospheric deposition of anthropogenic microfibres. Science of the Total Environment, 715: 136973. https://doi.org/10.1016/j.scitotenv.2020.136973
]Search in Google Scholar
[
Rodríguez, J.M, Estrabou, C., Filippini, E., Díaz Domínguez, R.E. (eds), 2021. Liquenes del centro de Argentina [Lichens of central Argentina]. Córdoba, Argentina: Editorial de la UNC. 106 p.
]Search in Google Scholar
[
Sett, R., Kundu, M., 2016. Epiphytic lichens: their usefulness as bio-indicators of air pollution. Donnish Journal of Research in Environmental Studies, 3 (3): 017–024.
]Search in Google Scholar
[
Stanton, T., Johnson, M., Nathanail, P., Macnaughan, W., Gomes, R.L., 2019. Freshwater and airborne textile fibre populations are dominated by ‘natural’, not micro-plastic, fibres. Science of the Total Environment, 666: 377–389. https://doi.org/10.1016/j.scitotenv.2019.02.278
]Search in Google Scholar
[
Stofer, S., Bergamini, A., Aragón, G., Carvalho, P., Coppins, B., Davey, S., Dietrich, M., Farkas, E., Karkkainen, K., Keller, C., Lokos, L., Lommi, S., Máguas, C., Mitchell, R., Pinho, P., Rico, V.J., Truscott, A.M., Wolseley, P.A., Watt, A., Scheidegger, C., 2006. Species richness of lichen functional groups in relation to land use intensity. The Lichenologist, 38 (4): 331–353. https://doi.org/10.1017/S0024282906006207
]Search in Google Scholar
[
Szymczyk, R., Zalewska, A., 2008. Lichens in the rural landscape of the Warmia Plain. Acta Mycologica, 43 (2): 215–230.
]Search in Google Scholar
[
Tatsi, D., Bucci, S., Bhowmick, T., Guettler, J., Bakels, L., Bagheri, G., Stohl, A., 2023. Shape matters: long-range transport of microplastic fibers in the atmosphere. Environmental Science and Technology, 58 (1): 671–682.
]Search in Google Scholar
[
Taurozzi, D., Gallitelli, L., Cesarini, G., Romano, S., Orsini, M., Scalici, M., 2024. Passive biomonitoring of airborne microplastics using lichens: a comparison between urban, natural and protected environments. Environment International, 187: 108707. https://doi.org/10.1016/j.envint.2024.108707
]Search in Google Scholar
[
Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle, D., Russell, A.E., 2004. Lost at sea: where is all the plastic? Science, 304: 838–838. DOI: 10.1126/science.1094559
]Search in Google Scholar
[
Wang, T., Niu, S., Wu, J., Yu, J., 2022. Seasonal and daily occurrence of microplastic pollution in urban road dust. Journal of Cleaner Production, 380: 135025.
]Search in Google Scholar
[
Way, C., Hudson, M.D., Williams, I.D., Langley, G.J., 2022. Evidence of underestimation in microplastic research: a meta-analysis of recovery rate studies. Science of the Total Environment, 805: 150227. https://doi.org/10.1016/j.scitotenv.2021.150227
]Search in Google Scholar
[
Wenzel, M., Schoettl J., Pruin, L., Fischer, B., Wolf C., Kube, C., Renner, G., Schram J., Schmidt, T.C., Tuerk, J., 2023. Determination of atmospherically deposited microplastics in moss: method development and performance evaluation. Green Analytical Chemistry, 7: 100078. https://doi.org/10.1016/j.greeac.2023.100078
]Search in Google Scholar
[
Windsor, F.M., Tilley, R.M., Tyler, C.R., Ormerod, S.J., 2018. Microplastic ingestion by riverine macroinvertebrates. Science of the Total Environment, 646: 68–74. https://doi.org/10.1016/j.scitotenv.2018.07.271
]Search in Google Scholar
[
Wolseley, P., Stofer, S., Mitchell, R., Truscott, A., Van-bergen, A., Chimonides, J., Scheidegger, C., 2006. Variation of lichen communities with landuse in Aber deenshire, UK. The Lichenologist, 38 (4): 307–322. https://doi.org/10.1017/S0024282906006190
]Search in Google Scholar
[
Wright, S.L., Ulke, J., Font, A., Chan, K.L.A., Kelly, F.J., 2020. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environment International, 136: 105411. https://doi.org/10.1016/j.envint.2019.105411
]Search in Google Scholar