This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Alos, E., Rey, F., Gil, J. V., Rodrigo, M. J., and Zacarias, L. (2021). Ascorbic acid content and transcriptional profiling of genes involved in its metabolism during development of petals, leaves, and fruits of orange (Citrus sinensis cv. Valencia Late). Plants (Basel, Switzerland), 10, 2590, https://doi.org/10.3390/plants10122590.AlosE.ReyF.GilJ. V.RodrigoM. J.ZacariasL. (2021). Ascorbic acid content and transcriptional profiling of genes involved in its metabolism during development of petals, leaves, and fruits of orange (Citrus sinensis cv. Valencia Late). Plants (Basel, Switzerland), 10, 2590, https://doi.org/10.3390/plants10122590.Search in Google Scholar
Alos, E., Rodrigo, M. J., and Zacarias, L. (2013). Transcriptomic analysis of genes involved in the biosynthesis, recycling and degradation of L-ascorbic acid in pepper fruits (Capsicum annuum L.). Plant Science: An International Journal of Experimental Plant Biology, 207, 2–11, https://doi.org/10.1016/j.plantsci.2013.02.007.AlosE.RodrigoM. J.ZacariasL. (2013). Transcriptomic analysis of genes involved in the biosynthesis, recycling and degradation of L-ascorbic acid in pepper fruits (Capsicum annuum L.). Plant Science: An International Journal of Experimental Plant Biology, 207, 2–11, https://doi.org/10.1016/j.plantsci.2013.02.007.Search in Google Scholar
Alos, E., Rodrigo, M. J., and Zacarias, L. (2014). Differential transcriptional regulation of L-ascorbic acid content in peel and pulp of citrus fruits during development and maturation. Planta, 239, 1113–1128, https://doi.org/10.1007/s00425-014-2044-z.AlosE.RodrigoM. J.ZacariasL. (2014). Differential transcriptional regulation of L-ascorbic acid content in peel and pulp of citrus fruits during development and maturation. Planta, 239, 1113–1128, https://doi.org/10.1007/s00425-014-2044-z.Search in Google Scholar
An, H. M., Fan, W. G., Chen, L. G., Asghar, S., and Liu, Q. L. (2007). Molecular characterisation and expression of L-galactono-1,4-lactone dehydrogenase and L-ascorbic acid accumulation during fruit development in Rosa roxburghii. The Journal of Horticultural Science and Biotechnology, 82, 627–635, https://doi.org/10.1080/14620316.2007.11512283.AnH. M.FanW. G.ChenL. G.AsgharS.LiuQ. L. (2007). Molecular characterisation and expression of L-galactono-1,4-lactone dehydrogenase and L-ascorbic acid accumulation during fruit development in Rosa roxburghii. The Journal of Horticultural Science and Biotechnology, 82, 627–635, https://doi.org/10.1080/14620316.2007.11512283.Search in Google Scholar
Aragueez, I., Cruz-Rus, E., Angel Botella, M., Medina-Escobar, N., and Valpuesta, V. (2013). Proteomic analysis of strawberry achenes reveals active synthesis and recycling of L-ascorbic acid. Journal of Proteomics, 83, 160–179, https://doi.org/10.1016/j.jprot.2013.03.016.AragueezI.Cruz-RusE.Angel BotellaM.Medina-EscobarN.ValpuestaV. (2013). Proteomic analysis of strawberry achenes reveals active synthesis and recycling of L-ascorbic acid. Journal of Proteomics, 83, 160–179, https://doi.org/10.1016/j.jprot.2013.03.016.Search in Google Scholar
Badejo, A. A., Jeong, S. T., Goto-Yamamoto, N., and Esaka, M. (2007). Cloning and expression of GDP-D-mannose pyrophosphorylase gene and ascorbic acid content of acerola (Malpighia glabra L.) fruit at ripening stages. Plant Physiology and Biochemistry, 45, 665–672, https://doi.org/10.1016/j.plaphy.2007.07.003.BadejoA. A.JeongS. T.Goto-YamamotoN.EsakaM. (2007). Cloning and expression of GDP-D-mannose pyrophosphorylase gene and ascorbic acid content of acerola (Malpighia glabra L.) fruit at ripening stages. Plant Physiology and Biochemistry, 45, 665–672, https://doi.org/10.1016/j.plaphy.2007.07.003.Search in Google Scholar
Bulley, S., Wright, M., Rommens, C., Yan, H., Rassam, M., Lin, W. K., Andre, C., Brewster, D., Karunairetnam, S., Allan, A. C., and Laing, W. A. (2012). Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. Plant Biotechnology Journal, 10, 390–397, https://doi.org/10.1111/j.1467-7652.2011.00668.x.BulleyS.WrightM.RommensC.YanH.RassamM.LinW. K.AndreC.BrewsterD.KarunairetnamS.AllanA. C.LaingW. A. (2012). Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. Plant Biotechnology Journal, 10, 390–397, https://doi.org/10.1111/j.1467-7652.2011.00668.x.Search in Google Scholar
Chen, Y. Y. (2015). Synthesis and metabolism of L-ascorbic acid in Chinese jujube and wild jujube. Dissertation, Hebei Agricultural University, China.ChenY. Y. (2015). Synthesis and metabolism of L-ascorbic acid in Chinese jujube and wild jujube. Dissertation, Hebei Agricultural University, China.Search in Google Scholar
Cruz-Rus, E., Botella, M. A., Valpuesta, V., and Gomez-Jimenez, M. C. (2010). Analysis of genes involved in L-ascorbic acid biosynthesis during growth and ripening of grape berries. Journal of Plant Physiology, 167, 739–748, https://doi.org/10.1016/j.jplph.2009.12.017.Cruz-RusE.BotellaM. A.ValpuestaV.Gomez-JimenezM. C. (2010). Analysis of genes involved in L-ascorbic acid biosynthesis during growth and ripening of grape berries. Journal of Plant Physiology, 167, 739–748, https://doi.org/10.1016/j.jplph.2009.12.017.Search in Google Scholar
De Pinto, M. C., Francis, D., and De Gara, L. (1999). The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma, 209, 90–97, https://doi.org/10.1007/BF01415704.De PintoM. C.FrancisD.De GaraL. (1999). The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma, 209, 90–97, https://doi.org/10.1007/BF01415704.Search in Google Scholar
Dowdle, J., Ishikawa, T., Gatzek, S., Rolinski, S., and Smirnoff, N. (2007). Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. The Plant Journal: for Cell and Molecular Biology, 52, 673–689, https://doi.org/10.1111/j.1365-313X.2007.03266.x.DowdleJ.IshikawaT.GatzekS.RolinskiS.SmirnoffN. (2007). Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. The Plant Journal: for Cell and Molecular Biology, 52, 673–689, https://doi.org/10.1111/j.1365-313X.2007.03266.x.Search in Google Scholar
Duan, M., Ma, N. N., Li, D., Deng, Y. S., Kong, F. Y., Lv, W., and Meng, Q. W. (2012). Antisense-mediated superession of tomato thylakoidal ascorbate peroxidase influences anti-oxidant network during chilling stress. Plant Physiology and Biochemistry, 58, 37–45, https://doi.org/10.1016/j.plaphy.2012.06.007.DuanM.MaN. N.LiD.DengY. S.KongF. Y.LvW.MengQ. W. (2012). Antisense-mediated superession of tomato thylakoidal ascorbate peroxidase influences anti-oxidant network during chilling stress. Plant Physiology and Biochemistry, 58, 37–45, https://doi.org/10.1016/j.plaphy.2012.06.007.Search in Google Scholar
Eltelib, H. A., Badejo, A. A., Fujikawa, Y., and Esaka, M. (2011). Gene expression of monodehydroascorbate reductase and dehydroascorbate reductase during fruit ripening and in response to environmental stresses in acerola (Malpighia glabra). Journal of Plant Physiology, 168, 619–627, https://doi.org/10.1016/j.jplph.2010.09.003EltelibH. A.BadejoA. A.FujikawaY.EsakaM. (2011). Gene expression of monodehydroascorbate reductase and dehydroascorbate reductase during fruit ripening and in response to environmental stresses in acerola (Malpighia glabra). Journal of Plant Physiology, 168, 619–627, https://doi.org/10.1016/j.jplph.2010.09.003Search in Google Scholar
Esaka, M., Hattori, T., Fujisawa, K., Sakajo, S., and Asahi, T. (1990). Molecular cloning and nucleotide sequence of full-length cDNA for ascorbate oxidase from cultured pumpkin cells. European Journal of Biochemistry, 191, 537–541, https://doi.org/10.1111/j.1432-1033.1990.tb19154.x.EsakaM.HattoriT.FujisawaK.SakajoS.AsahiT. (1990). Molecular cloning and nucleotide sequence of full-length cDNA for ascorbate oxidase from cultured pumpkin cells. European Journal of Biochemistry, 191, 537–541, https://doi.org/10.1111/j.1432-1033.1990.tb19154.x.Search in Google Scholar
Fang, T., Zhen, Q. L., Liao, L., Owiti, A., Zhao, L., Korban, S. S., and Han, Y. P. (2017). Variation of ascorbic acid concentration in fruits of cultivated and wild apples. Food Chemistry, 225, 132–137, https://doi.org/10.1016/j.foodchem.2017.01.014.FangT.ZhenQ. L.LiaoL.OwitiA.ZhaoL.KorbanS. S.HanY. P. (2017). Variation ofascorbic acid concentration in fruits of cultivated and wild apples. Food Chemistry, 225, 132–137, https://doi.org/10.1016/j.foodchem.2017.01.014.Search in Google Scholar
Gatzek, S., Wheeler, G. L., and Smirnoff, N. (2002). Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. The Plant Journal: for Cell and Molecular Biology, 30, 541–553, https://doi.org/10.1046/j.1365-313X.2002.01315.x.GatzekS.WheelerG. L.SmirnoffN. (2002). Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. The Plant Journal: for Cell and Molecular Biology, 30, 541–553, https://doi.org/10.1046/j.1365-313X.2002.01315.x.Search in Google Scholar
Huang, M., Xu, Q., and Deng, X. X. (2014). L-Ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (Rosa roxburghii Tratt). Journal of Plant Physiology, 171, 1205–1216, https://doi.org/10.1016/j.jplph.2014.03.010.HuangM.XuQ.DengX. X. (2014). L-Ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (Rosa roxburghii Tratt). Journal of Plant Physiology, 171, 1205–1216, https://doi.org/10.1016/j.jplph.2014.03.010.Search in Google Scholar
Imai, T., Ban, Y., Terakami, S., Yamamoto, T., and Moriguchi, T. (2009). L-Ascorbate biosynthesis in peach: Cloning of six L-galactose pathway-related genes and their expression during peach fruit development. Physiologia Plantarum, 136, 139–149, https://doi.org/10.1111/j.1399-3054.2009.01213.x.ImaiT.BanY.TerakamiS.YamamotoT.MoriguchiT. (2009). L-Ascorbate biosynthesis in peach: Cloning of six L-galactose pathway-related genes and their expression during peach fruit development. Physiologia Plantarum, 136, 139–149, https://doi.org/10.1111/j.1399-3054.2009.01213.x.Search in Google Scholar
Ioannidi, E., Kalamaki, M. S., Engineer, C., Pateraki, I., Alexandrou, D., Mellidou, I., Giovannonni, J., and Kanellis, A. K. (2009). Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. Journal of Experimental Botany, 60, 663–678, https://doi.org/10.1093/jxb/ern322.IoannidiE.KalamakiM. S.EngineerC.PaterakiI.AlexandrouD.MellidouI.GiovannonniJ.KanellisA. K. (2009). Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. Journal of Experimental Botany, 60, 663–678, https://doi.org/10.1093/jxb/ern322.Search in Google Scholar
Ishikawa, T., Dowdle, J., and Smirnoff, N. (2007). Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiologia Plantarum, 129, 831–831.IshikawaT.DowdleJ.SmirnoffN. (2007). Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiologia Plantarum, 129, 831–831.Search in Google Scholar
Laing, W. A., Wright, M. A., Cooney, J., and Bulley, S. M. (2007). The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proceedings of the National Academy of Sciences of the United States of America, 104, 9534–9539, https://doi.org/10.1073/pnas.0701625104.LaingW. A.WrightM. A.CooneyJ.BulleyS. M. (2007). The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proceedings of the National Academy of Sciences of the United States of America, 104, 9534–9539, https://doi.org/10.1073/pnas.0701625104.Search in Google Scholar
Lehninger, A. L., and Ul Hassan, M. (1956). Enzymatic formation of ascorbic acid in rat liver extracts. The Journal of Biological Chemistry, 223, 38–123.LehningerA. L.Ul HassanM. (1956). Enzymatic formation of ascorbic acid in rat liver extracts. The Journal of Biological Chemistry, 223, 38–123.Search in Google Scholar
Liang, D., Zhu, T. T., Ni, Z. Y., Lin, L. J., Tang, Y., Wang, Z. H., Wang, X., Wang, J., Lv, X. L., and Xia, H. (2017). Ascorbic acid metabolism during sweet cherry (Prunus avium) fruit development. PLoS ONE, 12, 16, https://doi.org/10.1371/journal.pone.0172818.LiangD.ZhuT. T.NiZ. Y.LinL. J.TangY.WangZ. H.WangX.WangJ.LvX. L.XiaH. (2017). Ascorbic acid metabolism during sweet cherry (Prunus avium) fruit development. PLoS ONE, 12, 16, https://doi.org/10.1371/journal.pone.0172818.Search in Google Scholar
Li, L. L., Lu, M., and An, H. M. (2017). Expression profiles of the genes involved in L-ascorbic acid biosynthesis and recycling in Rosa roxburghii leaves of various ages. Acta Physiologiae Plantarum, 39, 44, https://doi.org/10.1007/s11738-016-2346-9.LiL. L.LuM.AnH. M. (2017). Expression profiles of the genes involved in L-ascorbic acid biosynthesis and recycling in Rosa roxburghii leaves of various ages. Acta Physiologiae Plantarum, 39, 44, https://doi.org/10.1007/s11738-016-2346-9.Search in Google Scholar
Li, M. J., Ma, F. W., Guo, C. M., and Liu, J. (2010a). Ascorbic acid formation and profiling of genes expressed in its synthesis and recycling in apple leaves of different ages. Plant Physiology and Biochemistry, 48, 216–224, https://doi.org/10.1016/j.plaphy.2010.01.015.LiM. J.MaF. W.GuoC. M.LiuJ. (2010a). Ascorbic acid formation and profiling of genes expressed in its synthesis and recycling in apple leaves of different ages. Plant Physiology and Biochemistry, 48, 216–224, https://doi.org/10.1016/j.plaphy.2010.01.015.Search in Google Scholar
Li, M. J., Ma, F. W., Liang, D., Li, J., and Wang, Y. L. (2010b). Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi. PLoS ONE, 5, e14281, https://doi.org/10.1371/journal.pone.0014281.LiM. J.MaF. W.LiangD.LiJ.WangY. L. (2010b). Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi. PLoS ONE, 5, e14281, https://doi.org/10.1371/journal.pone.0014281.Search in Google Scholar
Linster, C. L., and Clarke, S. G. (2008). L-Ascorbate biosynthesis in higher plants: The role of VTC2. Trends in Plant Science, 13, 567–573, https://doi.org/10.1016/j.tplants.2008.08.005.LinsterC. L.ClarkeS. G. (2008). L-Ascorbate biosynthesis in higher plants: The role of VTC2. Trends in Plant Science, 13, 567–573, https://doi.org/10.1016/j.tplants.2008.08.005.Search in Google Scholar
Linster, C. L., Gomez, T. A., Christensen, K. C., Adler, L. N., Young, B. D., Brenner, C., and Clarke, S. G. (2007). Arabidopsis VTC2 encodes a GDP-L-Galactose phosphorylase, the last unknown enzyme in the Smirnoff-wheeler pathway to ascorbic acid in plants. The Journal of Biological Chemistry, 282, 18879–18885, https://doi.org/10.1074/jbc.M702094200.LinsterC. L.GomezT. A.ChristensenK. C.AdlerL. N.YoungB. D.BrennerC.ClarkeS. G. (2007). Arabidopsis VTC2 encodes a GDP-L-Galactose phosphorylase, the last unknown enzyme in the Smirnoff-wheeler pathway to ascorbic acid in plants. The Journal of Biological Chemistry, 282, 18879–18885, https://doi.org/10.1074/jbc.M702094200.Search in Google Scholar
Lin, Y. X., Zhao, B., Tang, H. L., Cheng, L. J., Zhang, Y. T., Wang, Y., Fan, J. M., Li, M. Y., Chen, Q., Luo, Y., Wang, X. R., Tang, H. R., and Zhang, Y. (2022). L-ascorbic acid metabolism in two contrasting hardy kiwifruit (Actinidia arguta) cultivars during fruit development. Scientia Horticulturae, 297, 110940, https://doi.org/10.1016/j.scienta.2022.110940.LinY. X.ZhaoB.TangH. L.ChengL. J.ZhangY. T.WangY.FanJ. M.LiM. Y.ChenQ.LuoY.WangX. R.TangH. R.ZhangY. (2022). L-ascorbic acid metabolism in two contrasting hardy kiwifruit (Actinidia arguta) cultivars during fruit development. Scientia Horticulturae, 297, 110940, https://doi.org/10.1016/j.scienta.2022.110940.Search in Google Scholar
Liu, F. H., Wang, L., Gu, L., Zhao, W., Su, H. Y., and Cheng, X. H. (2015). Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry. Food Chemistry, 188, 399–405, https://doi.org/10.1016/j.foodchem.2015.05.036.LiuF. H.WangL.GuL.ZhaoW.SuH. Y.ChengX. H. (2015). Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry. Food Chemistry, 188, 399–405, https://doi.org/10.1016/j.foodchem.2015.05.036.Search in Google Scholar
Liu, M. J., Zhao, J., Cai, Q. L., Liu, G. C., Wang, J. R., Zhao, Z. H., Liu, P., Dai, L., Yan, G., Wang, W. J., Li, X. S., Chen, Y., Sun, Y. D., Liu, Z. G., Lin, M. J., Xiao, J., Chen, Y. Y., Li, X. F., Wu, B., Ma, Y., Jian, J. B., Yang, W., Yuan, Z., Sun, X. C., Wei, Y. L., Yu, L. L., Zhang, C., Liao, S. G., He, R. J., Guang, X. M., Wang, Z., Zhang, Y. Y., and Luo, L. H. (2014). The complex jujube genome provides insights into fruit tree biology. Nature Communnications, 5, 63– 69, https://doi.org/10.1038/ncomms6315.LiuM. J.ZhaoJ.CaiQ. L.LiuG. C.WangJ. R.ZhaoZ. H.LiuP.DaiL.YanG.WangW. J.LiX. S.ChenY.SunY. D.LiuZ. G.LinM. J.XiaoJ.ChenY. Y.LiX. F.WuB.MaY.JianJ. B.YangW.YuanZ.SunX. C.WeiY. L.YuL. L.ZhangC.LiaoS. G.HeR. J.GuangX. M.WangZ.ZhangY. Y.LuoL. H. (2014). The complex jujube genome provides insights intofruit tree biology. Nature Communnications, 5, 63– 69, https://doi.org/10.1038/ncomms6315.Search in Google Scholar
Lu, D. Y., Wu, Y., Pan, Q. H., Zhang, Y. P., Qi, Y. Y., and Bao, W. H. (2022). Identification of key genes controlling L-ascorbic acid during jujube (Ziziphus jujuba Mill.) fruit development by integrating transcriptome and metabolome analysis. Frontiers in Plant Science, 13, 950103, https://doi.org/10.3389/fpls.2022.950103.LuD. Y.WuY.PanQ. H.ZhangY. P.QiY. Y.BaoW. H. (2022). Identification of key genes controlling L-ascorbic acid during jujube (Ziziphus jujuba Mill.) fruit development by integrating transcriptome and metabolome analysis. Frontiers in Plant Science, 13, 950103, https://doi.org/10.3389/fpls.2022.950103.Search in Google Scholar
Sanmartin, M., Pateraki, I., Chatzopoulou, F., and Kanellis, A. K. (2007). Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress. Planta, 225, 873–885, https://doi.org/10.1007/s00425-006-0399-5.SanmartinM.PaterakiI.ChatzopoulouF.KanellisA. K. (2007). Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress. Planta, 225, 873–885, https://doi.org/10.1007/s00425-006-0399-5.Search in Google Scholar
Stevens, R., Page, D., Gouble, B., Garchery, C., Zamir, D., and Causse, M. (2008). Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant, Cell & Environment, 31, 1086–1096, https://doi.org/10.1111/j.1365-3040.2008.01824.x.StevensR.PageD.GoubleB.GarcheryC.ZamirD.CausseM. (2008). Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant, Cell & Environment, 31, 1086–1096, https://doi.org/10.1111/j.1365-3040.2008.01824.x.Search in Google Scholar
Wang, L. Y., Gao, H., and Bo, C. J. (2019). Mechanism of ascorbic acid synthesis during jujube development. Journal of Dezhou University, 35, 98–102 (in Chinese).WangL. Y.GaoH.BoC. J. (2019). Mechanism of ascorbic acid synthesis during jujube development. Journal of Dezhou University, 35, 98–102 (in Chinese).Search in Google Scholar
Wheeler, G. L., Jones, M. A., and Smirnoff, N. (1998). The biosynthetic pathway of vitamin C in higher plants. Nature, 393, 365–369, https://doi.org/10.1038/30728.WheelerG. L.JonesM. A.SmirnoffN. (1998). The biosynthetic pathway of vitamin C in higher plants. Nature, 393, 365–369, https://doi.org/10.1038/30728.Search in Google Scholar
Yan, X. Q., Zhang, X., Lu, M., He, Y., and An, H. M. (2015). De novo sequencing analysis of the Rosa roxburghii fruit transcriptome reveals putative ascorbate biosynthetic genes and EST-SSR markers. Gene, 561, 54–62, https://doi.org/10.1016/j.gene.2015.02.054.YanX. Q.ZhangX.LuM.HeY.AnH. M. (2015). De novo sequencing analysis of the Rosa roxburghii fruit transcriptome reveals putative ascorbate biosynthetic genes and EST-SSR markers. Gene, 561, 54–62, https://doi.org/10.1016/j.gene.2015.02.054.Search in Google Scholar
Zhang, C. M., Huang, J., and Li, X. G. (2016). Transcriptomic analysis reveals the metabolic mechanism of L-ascorbic acid in Ziziphus jujuba Mill. Frontiers in Plant Science, 7, 122, https://doi.org/10.3389/fpls.2016.00122.ZhangC. M.HuangJ.LiX. G. (2016). Transcriptomic analysis reveals the metabolic mechanism of L-ascorbic acid in Ziziphus jujuba Mill. Frontiers in Plant Science, 7, 122, https://doi.org/10.3389/fpls.2016.00122.Search in Google Scholar