Accès libre

Iodosalicylates and iodobenzoates supplied to tomato plants affect the antioxidative and sugar metabolism differently than potassium iodide

À propos de cet article

Citez

Akram N.A., Shafiq F., Ashraf M., 2017. Ascorbic acid – a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front. Plant. Sci. 8, 613.10.3389/fpls.2017.00613Search in Google Scholar

Beers R.F., Sizer I.W., 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195(1), 133-140.10.1016/S0021-9258(19)50881-XSearch in Google Scholar

Bolouri-Moghaddam M.R., Le Roy K., Xiang L., Rolland F., Van Den Ende W., 2010. Sugar signaling and antioxidant network connections in plant cells. FEBS J. 277, 2023-2037.10.1111/j.1742-4658.2010.07633.x20412056Search in Google Scholar

Blasco B., Rios J.J., Cervilla L.M., Sánchez-Rodrigez E., Ruiz J.M., Romero L., 2008. Iodine biofortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Ann. Appl. Biol. 152, 289-299.10.1111/j.1744-7348.2008.00217.xSearch in Google Scholar

Blasco B., Ríos J.J., Leyva R., Cervilla L.M., Sánchez-Rodríguez E., Rubio-Wilhelmi M.M., Rosales M.A., Ruiz J.M., Romero L., 2011. Does iodine biofortification affect oxidative metabolism in lettuce plants? Biol. Trace. Elem. Res. 142, 831-842.10.1007/s12011-010-8816-920838926Search in Google Scholar

Chen Z., Klessig D.F., 1991. Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response. Proc. Natl. Acad. Sci. USA 88, 8179-8183.10.1073/pnas.88.18.81795247011607212Search in Google Scholar

Chen Z., Ricigliano J.W., Klessig D.F., 1993. Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc. Natl. Acad. Sci. USA 90, 9533-9537.10.1073/pnas.90.20.9533476038415736Search in Google Scholar

Conrath U., Chen Z., Ricigliano J.R., Klessig D.F., 1995. Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proc. Natl. Acad. Sci. USA 92, 7143-7147.10.1073/pnas.92.16.71434129511607566Search in Google Scholar

Deutsch J.C., 1997. Ascorbic and dehydroascorbic acid interconversion without net oxidation or reduction. Anal. Biochem. A247, 58-62.10.1006/abio.1997.20359126371Search in Google Scholar

De Pinto M.C., De Gara L., 2004. Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. J. Exp. Bot. 55, 2559-2569.10.1093/jxb/erh25315475379Search in Google Scholar

Del Rio L.A., Sandalio L.M., Corpas F.J., Barroso J.B., 2006. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant. Physiol. 141, 330-335.10.1104/pp.106.078204Search in Google Scholar

Durner J., Klessig D.F., 1995. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc. Natl. Acad. Sci. USA 92, 11312-11316.10.1073/pnas.92.24.11312Search in Google Scholar

Dresler S., Maksymiec W., 2013. Capillary zone electrophoresis for determination of reduced and oxidised ascorbate and glutathione in roots and leaf segments of Zea mays plants exposed to Cd and Cu. Acta. Sci. Pol. Hortorum Cultus 12, 143-155.Search in Google Scholar

Eraslan F., Inal A., Gunes A., Alpaslan M., 2007. Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci. Hortic. 113, 120-128.10.1016/j.scienta.2007.03.012Search in Google Scholar

Fukumoto L.R., Mazza G., 2000. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food. Chem. 48(8), 3597-3604.10.1021/jf000220wSearch in Google Scholar

Gill S.S., Tuteja N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant. Phisiol. Biochem. 48(12), 909-930.10.1016/j.plaphy.2010.08.016Search in Google Scholar

Golubkina N., Kekina H., Caruso G., 2018. Yield, quality and antioxidant properties of Indian Mustard (Brassica juncea L.) in response to foliar biofortification with selenium and iodine. Plants 7(4), E80.10.3390/plants7040080Search in Google Scholar

Gonzali S., Kiferle C., Perata P., 2017. Iodine biofortification, metabolic engineering and iodine bioavailability. Curr. Opin. Biotechnol. 44, 16-26.10.1016/j.copbio.2016.10.004Search in Google Scholar

Gupta A.K., Kaur N., 2005. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J. Biosci. 30, 761-776.10.1007/BF02703574Search in Google Scholar

Gupta N., Bajpai M., Majumdar R., Mishra P., 2015. Response of iodine on antioxidant levels of Glycine max L. grown under Cd2+ stress. Adv. Biol. Res. 9, 40-48.Search in Google Scholar

Halka M., Klimek-Chodacka M., Smoleń S., Baranski R., Ledwożyw-Smoleń I., Sady W., 2018. Organic iodine supply affects tomato plants differently than inorganic iodine. Physiol. Plant. 164(3), 290-306.10.1111/ppl.12733Search in Google Scholar

Hawrylak-Nowak B., 2008. Effect of selenium on selected macronutrients in maize plants. J. Elementol. 13(4), 513-519.Search in Google Scholar

Hilal M., Parrado M.F., Rosa M., Gallardo M., Orce L., Massa E.D., González J.A., Prado F.E., 2004. Epidermal lignin deposition in quinoa cotyledons in response to UV-B radiation. Photochem. Photobiol. 79, 205-210.10.1562/0031-8655(2004)079<0205:ELDIQC>2.0.CO;2Search in Google Scholar

Iba K., 2002. Acclimation responses to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu. Rev. Plant. Biol. 53, 225-245.10.1146/annurev.arplant.53.100201.160729Search in Google Scholar

Journet E.P., Bligny R., Douce R., 1986. Biochemical changes during sucrose deprivation in higher plant cells. J. Biol. Chem. 261, 3193-3199.10.1016/S0021-9258(17)35767-8Search in Google Scholar

Kapusta-Duch J., Bieżanowska- Kopeć R., Smoleń S., Pysz M., Kopeć A., Piątkowska E., Rakoczy R., Koronowicz A., Skoczylas Ł., Leszczyńska T., 2017. The effect of preliminary processing and different methods of cooking on the iodine content and selected antioxidative properties of carrot (Daucus carota L.) biofortified with (potassium) iodine. Folia. Hort. 29(1), 11-24.10.1515/fhort-2017-0002Search in Google Scholar

Kiferle C., Gonzali S., Holwerda H.T., Ibaceta R.R., Perata P., 2013. Tomato fruits: a good target for iodine biofortification. Front. Plant. Sci. 4, 205.10.3389/fpls.2013.00205Search in Google Scholar

König J., Baier M., Horling F., Kahmann U., Harris G., Schürmann P., Dietz K.-J., 2002. The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of PET. Proc. Natl. Acad. Sci. USA 99, 5738-5743.10.1073/pnas.072644999Search in Google Scholar

Kühn C., Barker L., Burkle L., Frommer W.B., 1999. Update on sucrose transport in higher plants. J. Exp. Bot. 50, 935-953.10.1093/jxb/50.Special_Issue.935Search in Google Scholar

Landini M., Gonzali S., Perata P., 2011. Iodine biofortification in tomato. J. Plant. Nutr. Soil. Sci. 174, 480-486.10.1002/jpln.201000395Search in Google Scholar

Leja M., Kamińska I., Kramer M., Maksylewicz-Kaul A., Kammerer D., Carle R., Baranski R., 2013. The content of phenolic compounds and radical scavenging activity varies with carrot origin and root colour. Plant. Foods. Hum. Nutr. 68, 163-170.10.1007/s11130-013-0351-3Search in Google Scholar

Lin J.S., Wang G.X., 2002. Doubled CO2 could improve the drought tolerance better in sensitive cultivars than in tolerant cultivars in spring wheat. Plant. Sci. 163(3) 627-637.10.1016/S0168-9452(02)00173-5Search in Google Scholar

Lunn J.E., Macrae E., 2003. New complexities in the synthesis of sucrose. Curr. Opin. Plant. Biol. 6, 208-21410.1016/S1369-5266(03)00033-5Search in Google Scholar

Martens S., Preuss A., Matern U., 2010. Multi-functional flavonoid dioxygenases : flavonols and anthocyanin biosynthesis in Arabidopsis thaliana L. Phytochemistry 71, 1040-1049.10.1016/j.phytochem.2010.04.01620457455Search in Google Scholar

Medrano-Macías J., Leija-Martínez P., González-Morales S., Juárez-Maldonado A., Benavides-Mendoza A., 2016. Use of iodine to biofortify and promote growth and stress tolerance in crops. Front. Plant. Sci. 7, 1146.10.3389/fpls.2016.01146499378727602033Search in Google Scholar

Melse-Boonstra A., Jaiswal N., 2010. Iodine deficiency in pregnancy, infancy and childhood and its consequences for brain development. Best. Pract. Res. Clin. Endocrinol. Metab. 24, 29-38.10.1016/j.beem.2009.09.00220172468Search in Google Scholar

Mottiar Y., 2013. Iodine biofortification through plant biotechnology. Nutrition. 29, 1431.10.1016/j.nut.2013.04.00923948340Search in Google Scholar

Nakano Y., Asada K., 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant. Cell. Physiol. 22(5), 867-880.Search in Google Scholar

Navrot N., Rouhier N., Gelhaye E., Jacquot J.P., 2007. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant. 129, 185-195.10.1111/j.1399-3054.2006.00777.xSearch in Google Scholar

Onsa G.H., Bin Saari N., Selamat J., Bakar J., 2004. Purification and characterization of membrane-bound peroxidases from Metroxylon sagu. Food. Chem. 85, 365-376.10.1016/j.foodchem.2003.07.013Search in Google Scholar

PN-EN15111, 2008. Food stuffs–Determination of Trace Elements–Determination of Iodine by ICP-MS (Inductively Coupled Plasma Mass Spectrometry). Polish Committee of Standardization (in Polish), Warsaw.Search in Google Scholar

Randihr R., Lin Y.T., Shetty K., 2004. Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia. Pac. J. Clin. Nutr. 13, 295-307.Search in Google Scholar

Reuveni R., Shimoni M., Karchi Z., Kuc J., 1992. Peroxidase activity as a biochemical marker for resistance of muskmelon (Cucumis melo) to Pseudoperonospora cubensis. Phytopathology. 82(7), 749-753.10.1094/Phyto-82-749Search in Google Scholar

Sady W., Smoleń S., Ledwożyw-Smoleń I., 2014. Methods of biofortification of vegetables with iodine in hydroponic cultures. Patent application no. P.410806 – Polish Patent Office 30 XII 2014.Search in Google Scholar

Sikora E., Cieślik E., Leszczyńska T., Filipiak-Florkiewicz A., Pisulewski P.M., 2008. The antioxidant activity of selected cruciferous vegetables subjected to aquathermal processing. Food. Chem. 107, 55-59.10.1016/j.foodchem.2007.07.023Search in Google Scholar

Shim I.-S., Momose Y., Yamamoto A., Kim D.-W., Usui K., 2003. Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. J. Plant. Growth. Regul. 39, 285-292.10.1023/A:1022861312375Search in Google Scholar

Smirnoff N., Wheeler G.L., 2000. Ascorbic acid in plants: biosynthesis and function. Crit. Rev. Biochem. Mol. Biol. 35, 291-314.10.1080/1040923000898416611005203Search in Google Scholar

Smoleń S., Wierzbińska J., Sady W., Kołton A., Wiszniewska A., Liszka-Skoczylas M., 2015. Iodine biofortification with additional application of salicyli acid affects yield and selected parameters of chemical composition of tomato fruits (Solanum lycopersicum L.). Sci. Hortic. 188, 89-96.10.1016/j.scienta.2015.03.023Search in Google Scholar

Smoleń S., Kowalska I., Czernicka M., Halka M., Kęska K., Sady W., 2016. Iodine and selenium biofortification with additional application of salicylic acid affects yield, selected molecular parameters and chemical composition of lettuce plants (Lactuca sativa L. var. capitata). Front. Plant. Sci. 7, 1553.10.3389/fpls.2016.01553Search in Google Scholar

Smoleń S., Ledwożyw-Smoleń I., Halka M., Sady W., Kováčik P., 2017. The absorption of iodine from 5-iodosalicylic acid by hydroponically grown lettuce. Sci. Hortic. 225, 716-725.10.1016/j.scienta.2017.08.009Search in Google Scholar

Sofo A., Scopa A., Nuzzaci M., Vitti A., 2015. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int. J. Mol. Sci. 16(6), 13561-13578.10.3390/ijms160613561Search in Google Scholar

Tripathy B.C., Oelmüller R., 2012. Reactive oxygen species generation and signaling in plants. Plant. Signal. Behav. 7, 1621-1633.10.4161/psb.22455Search in Google Scholar

Van Den Ende W., Valluru R., 2009. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J. Exp. Bot. 60, 9-18.10.1093/jxb/ern297Search in Google Scholar

Walker S.P., Wachs T.D., Gardner J.M., Lozoff B., Wasserman G.A., Pollitt E., Carter J.A., 2007. Child development: risk factors for adverse outcomes in developing countries. Lancet. 369, 145-157.10.1016/S0140-6736(07)60076-2Search in Google Scholar

Waterborg J.H., 2002. The Lowry method for protein quantitation. In: The Protein Protocols Handbook. J.M. Walker (Eds), Humana Press Inc, Totowa, New Jersey, USA, 7-10.10.1385/1-59259-169-8:7Search in Google Scholar

Welinder K.G., 1992. Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struct. Biol. 2, 388-393.10.1016/0959-440X(92)90230-5Search in Google Scholar

Wheeler G.L., Jones M.A., Smirnoff N., 1998. The biosynthetic pathway of vitamin C in higher plants. Nature 393, 365-369.10.1038/307289620799Search in Google Scholar

WHO, 2014. Salt reduction and iodine fortification strategies in public health. Report of a Joint Technical Meeting Convened by World Health Organization and The Global Health in Collaboration in the International Council for the control of Iodine deficiency disorders Global Network, Geneva.Search in Google Scholar

Yamada H., Sugahara M., Kosaka H., Katayama A., Takahashi K., Yonebayashi K., 1996. Determination of total and water soluble iodine in soil by high performance liquid chromatography. Soil Sci. Plant. Nutr. 42, 367-374.10.1080/00380768.1996.10416633Search in Google Scholar

Zamocky M., Furtmüller P.G., Obinger C., 2008. Evolution of catalases from bacteria to humans. Antioxid. Redox. Signal. 10, 1527-1548.10.1089/ars.2008.2046295918618498226Search in Google Scholar

Zhang Y., Butelli E., Martin C., 2014. Engeneering anthocyanin biosynthesis in plants. Curr. Opin. Plant. Biol. 19, 81-90.10.1016/j.pbi.2014.05.01124907528Search in Google Scholar

Zhao Y.Q., Zheng J.P., Yang M.W., Yang G.D., Wu Y.N., Fu F.F., 2011. Speciation analysis of selenium in rice samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta 84, 983-988.10.1016/j.talanta.2011.03.00421482313Search in Google Scholar

Zimmermann M.B., 2011. The role of iodine in human growth and development. Semin. Cell. Dev. Biol. 22, 645-652.10.1016/j.semcdb.2011.07.00921802524Search in Google Scholar

eISSN:
2083-5965
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, Plant Science, Zoology, Ecology, other