Accès libre

Exogenous isoleucine and phenylalanine interact with abscisic acid-mediated anthocyanin accumulation in grape

À propos de cet article

Citez

Arita K., Honma T., Suzuki S., 2017. Comprehensive and comparative lipidome analysis of Vitis vinifera cv. Pinot Noir and Japanese indigenous V. vinifera cv. Koshu grape berries. PLoS ONE 12, e0186952.10.1371/journal.pone.0186952565018729053756Search in Google Scholar

Bakker J., Preston N.W., Timberlake C.F., 1986. The determination of anthocyanins in aging red wines: comparison of HPLC and spectral methods. Am. J. Enol. Vitic. 37, 121-126.10.5344/ajev.1986.37.2.121Search in Google Scholar

Ban T., Ishimaru M., Kobayashi S., Goto-Yamamoto N., Horiuchi S., 2003. Abscisic acid and 2,4-dichlorophenoxyacetic acid affect the expression of anthocyanin biosynthetic pathway genes in ‘Kyoho’ grape berries. J. Hortic. Sci. Biotechnol. 78, 586-589.10.1080/14620316.2003.11511668Search in Google Scholar

Boss P.K., Davies C, Robinson S.P., 1996. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol. 111, 1059-1066.10.1104/pp.111.4.105916098112226348Search in Google Scholar

Brar H.S., Singh Z., Swinny E., Cameron I., 2008. Girdling and grapevine leafroll associated viruses affect berry weight, colour development and accumulation of anthocyanins in ‘Crimson Seedless’ grapes during maturation and ripening. Plant Sci. 175, 885-897.10.1016/j.plantsci.2008.09.005Search in Google Scholar

Cai Z., Knorr D., Smetanska I., 2012. Enhanced anthocyanins and resveratrol production in Vitis vinifera cell suspension culture by indanoylisoleucine, N-linolenoyl-L-glutamine and insect saliva. Enzyme Microb. Technol. 50, 29-34.10.1016/j.enzmictec.2011.09.00122133437Search in Google Scholar

Calvo P., Nelson L., Kloepper J.W., 2014. Agricultural uses of plant biostimulants. Plant Soil 383, 3-41.10.1007/s11104-014-2131-8Search in Google Scholar

Carreño J., Faraj S., Martinez A., 1998. Effects of girdling and covering mesh on ripening, colour and fruit characteristics of ‘Italia’ grapes. J. Hortic. Sci. Biotech. 73, 103-106.10.1080/14620316.1998.11510951Search in Google Scholar

Castellarin S.D., Gaspero G.D., Marconi R., Nonis A., Peterlunger E., Paillard S., et al., 2006. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3’-hydroxylase, flavonoid 3’,5’-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics 7, 1471-1488.10.1186/1471-2164-7-12140375616433923Search in Google Scholar

Castellarin S.D., Gaspero D.G., 2007. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol. 30, 46-55.10.1186/1471-2229-7-46214700617760970Search in Google Scholar

De Orduña R.M., 2010. Climate change associated effects on grape and wine quality and production. Food Res. Int. 43, 1844-1855.10.1016/j.foodres.2010.05.001Search in Google Scholar

Deluc L.G., Grimplet J., Wheatley M.D., Tillett R.L., Quilici D.R., Osborne C., et al., 2007. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8, 429.10.1186/1471-2164-8-429222000618034876Search in Google Scholar

Dixon R.A., Achnine L., Kota P., Liu C.J., Reddy M.S., Wang L., 2002. The phenylpropanoid pathway and plant defence-a genomics perspective. Mol. Plant Pathol. 3, 371-390.10.1046/j.1364-3703.2002.00131.x20569344Search in Google Scholar

Enoki S., Hattori T., Ishiai S., Tanaka S., Mikami M., Arita K., et al., 2017. Vanillylacetone up-regulates expression of genes leading to anthocyanin accumulation by inducing endogenous abscisic acid in grape cell cultures. J. Plant Physiol. 219, 22-27.10.1016/j.jplph.2017.09.00528961464Search in Google Scholar

Gagné S., Estève K., Deytieux C., Saucier C., Gény L., 2006. Influence of abscisic acid in triggering “véraison” in grape berry skins of Vitis vinifera L. cv. Cabernet Sauvignon. J. Int. Sci. Vigne Vin. 40, 7-14.10.20870/oeno-one.2006.40.1.882Search in Google Scholar

Gaiotti F., Pastore C., Filippetti I., Lovat L., Belfiore N., Tomasi D., 2018. Low night temperature at véraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis vinifera L.). Sci. Rep. 8, 8719.10.1038/s41598-018-26921-4599219429880890Search in Google Scholar

Garde-Cerdán T., López R., Portu J., González-Arenzana L., López-Alfaro I., Santamaría P., 2014. Study of the effects of proline, phenylalanine, and urea foliar application to Tempranillo vineyards on grape amino acid content. Comparison with commercial nitrogen fertilisers. Food Chem. 163, 136-141.10.1016/j.foodchem.2014.04.10124912708Search in Google Scholar

Gąstoł M., 2015. Vineyard performance and fruit quality of some interspecific grapevine cultivars in cool climate conditions. Folia Hort. 27, 21-31.10.1515/fhort-2015-0011Search in Google Scholar

González-Arenzana L., Portu J., López R., Garijo P., Garde-Cerdán T., López-Alfaro I., 2017. Phenylalanine and urea foliar application: Effect on grape and must microbiota. Int. J. Food Microbiol. 245, 88-97.10.1016/j.ijfoodmicro.2017.01.01728157582Search in Google Scholar

Guidoni S., Allara P., Schubert A., 2002. Effect of cluster thinning on berry skin anthocyanin composition of Vitis vinifera cv. Nebbiolo. Am. J. Enol. Vitic. 53, 224-226.10.5344/ajev.2002.53.3.224Search in Google Scholar

Jones G.V., White M.A., Cooper O.R., Storchmann K., 2005. Climate change and global wine quality. Clim. Change 73, 319-43.10.1007/s10584-005-4704-2Search in Google Scholar

Kataoka I., Sugiura A., Utsunomiya N., Tomana T., 1982. Effect of abscisic acid and defoliation on anthocyanin accumulation in Kyoho grapes (Vitis vinifera L.×V. labruscana Bailey). Vitis 21, 325-332.Search in Google Scholar

Kennedy J.A., Saucier C., Glories Y., 2006. Grape and wine phenolics: history and perspective Am. J. Enol. Vitic. 57, 239-248.10.5344/ajev.2006.57.3.239Search in Google Scholar

Kobayashi S., Goto-Yamamoto N., Hirokawa H., 2004. Retrotransposon-induced mutations in grape skin color. Science 304, 982.10.1126/science.109501115143274Search in Google Scholar

Koshita Y., Yamane T., Yakushiji H., Azuma A., Mitani N., 2011. Regulation of skin color in ‘Aki Queen’ grapes: interactive effects of temperature, girdling, and leaf shading treatments on coloration and total soluble solids. Sci. Hortic. 129, 98-101.10.1016/j.scienta.2011.03.014Search in Google Scholar

Koyama K., Sadamatsu K., Goto-Yamamoto N., 2010. Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct. Integr. Genomics 10, 367-381.10.1007/s10142-009-0145-819841954Search in Google Scholar

MacDonald M.J., D’Cunha G.B., 2007. A modern view of phenylalanine ammonia lyase. Biochem. Cell Biol. 85, 273-282.10.1139/O07-01817612622Search in Google Scholar

Matus J.T., Loyola R., Vega A., Neira A.P., Bordeu E., Johnson P.A., et al., 2009. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J. Exp. Bot. 60, 853-867.10.1093/jxb/ern336265205519129169Search in Google Scholar

Mikami M., Mori D., Masumura Y., Aoki Y., Suzuki S., 2017. Electrical stimulation: an abiotic stress generator for enhancing anthocyanin and resveratrol accumulation in grape berry. Sci. Hortic. 226, 285-292.10.1016/j.scienta.2017.09.005Search in Google Scholar

Mori K., Goto-Yamamoto N., Kitayama M., Hashizume K., 2007. Loss of anthocyanins in red-wine grape under temperature. J. Exp. Bot. 58, 1935-1945.10.1093/jxb/erm05517452755Search in Google Scholar

Mori K., Sugaya S., Gemma H., 2005. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci. Hortic. 105, 319-330.10.1016/j.scienta.2005.01.032Search in Google Scholar

Peppi M.C., Walker M.A., Fidelibus M.W., 2008. Application of abscisic acid rapidly upregulated UFGT gene expression and improved color of grape berries. Vitis 47, 11-24.Search in Google Scholar

Pilati S., Bagagli G., Sonego P., Moretto M., Brazzale D., Castorina G., et al., 2017. Abscisic acid is a major regulator of grape berry ripening onset: new insights into ABA signaling network. Front. Plant Sci. 8, 1093.10.3389/fpls.2017.01093547905828680438Search in Google Scholar

Portu J., Gonzalez-Arenzana L., Hermosín-Gutiérrez I., Santamaría P., Garde-Cerdan T., 2015. Phenylalanine and urea foliar applications to grapevine: Effect on wine phenolic content. Food Chem. 180, 55-63.10.1016/j.foodchem.2015.02.00825766801Search in Google Scholar

Portu J., López R., Baroja E., Santamaría P., Garde-Cerdán, T., 2016. Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract. Food Chem. 201, 213-221.10.1016/j.foodchem.2016.01.08626868568Search in Google Scholar

Portu J., Santamaría P., López R., Garde-Cerdán T., 2017. Phenolic composition of Tempranillo grapes following foliar applications of phenylalanine and urea: A two-year study. Sci. Hortic. 219, 191-199.10.1016/j.scienta.2017.03.014Search in Google Scholar

Romero-Cascales I., Ortega-Regules A., López-Roca J.M., Fernández-Fernández J.I., Gómez-Plaza E., 2005. Differences in anthocyanin extractability from grapes to wines according to variety. Am. J. Enol. Vitic. 56, 212-219.10.5344/ajev.2005.56.3.212Search in Google Scholar

Rudell D.R., Mattheis J.P., Fan X., Fellman J.K., 2002. Methyl jasmonate enhances anthocyanin accumulation and modifies production of phenolics and pigments in Fuji’ Apples. J. Am. Soc. Hortic. Sci. 127, 435-441.10.21273/JASHS.127.3.435Search in Google Scholar

Schuler G., Mithofer A., Baldwin I.T., Berger S., Ebel J., Santos J.G., et al., 2004. Coronalon: A powerful tool in plant stress physiology. FEBS Lett. 563, 17-22.10.1016/S0014-5793(04)00239-XSearch in Google Scholar

Shan X., Zhang Y., Peng W., Wang Z., Xie D., 2009. Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J. Exp. Bot. 60, 3849-3860.10.1093/jxb/erp22319596700Search in Google Scholar

Smit I., Pfliehinger M., Binner A., Grossmann M., Horst W.J., Löhnertz O., 2014. Nitrogen fertilisation increases biogenic amines and amino acid concentrations in Vitis vinifera var. Riesling musts and wines. J. Sci. Food Agric. 94, 2064-2072.10.1002/jsfa.652524323937Search in Google Scholar

Spayd S.E., Tarara J.M., Mee D.L., Ferguson J.C., 2002. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. Am. J. Enol. Vitic. 53, 171-182.10.5344/ajev.2002.53.3.171Search in Google Scholar

Tarara J.M., Lee J., Spayd S.E., Scagel C.F., 2008. Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. Am. J. Enol. Vitic. 59, 235-247.10.5344/ajev.2008.59.3.235Search in Google Scholar

Tardaguila, J., de Toda, F.M., Poni, S., Diago, M.P., 2010. Impact of early leaf removal on yield and fruit and wine composition of Vitis vinifera L. Graciano and Carignan. Am. J. Enol. Vitic. 61, 372-381.10.5344/ajev.2010.61.3.372Search in Google Scholar

Wheeler S., Loveys B., Ford C., Davies C., 2009. The relationship between the expression of abscisic acid biosynthesis genes, accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Aust. J. Grape Wine Res. 15, 195-204.10.1111/j.1755-0238.2008.00045.xSearch in Google Scholar

Yamakawa T., Kato S., Ishida K., Kodama T., Minoda Y., 1983. Production of anthocyanins by Vitis cells in suspension culture. Agric. Biol. Chem. 47, 2185-2191.10.1271/bbb1961.47.2185Search in Google Scholar

Yokotsuka K., Nagao A., Nakazawa K., Sato M., 1999. Changes in anthocyanins in berry skins of Merlot and Cabernet Sauvignon grapes grown in two soils modified with limestone or oyster shell versus a native soil over two years. Am. J. Enol. Vitic. 50, 1-12.10.5344/ajev.1999.50.1.1Search in Google Scholar

eISSN:
2083-5965
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, Plant Science, Zoology, Ecology, other