Accès libre

Improving Machine Learning-Based Robot Self-Collision Checking with Input Positional Encoding

 et   
21 août 2025
À propos de cet article

Citez
Télécharger la couverture

Belter D. Efficient modeling and evaluation of constraints in path planning for multi-legged walking robots. IEEE Access, 7:107845–107862, 2019. Search in Google Scholar

Das N. and Yip M. Learning-based proxy collision detection for robot motion planning applications. IEEE Transactions on Robotics, 36(4):1096–1114, 2020. Search in Google Scholar

Das N. and Yip M. C. Forward kinematics kernel for improved proxy collision checking. IEEE Robotics and Automation Letters, 5(2):2349–2356, 2020. Search in Google Scholar

Kennedy J. and Eberhart R. C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, pages 1942–1948, 1995. Search in Google Scholar

Kicki P., Liu P., Tateo D., Bou-Ammar H., Walas K., Skrzypczyński P., and Peters J. Fast kinodynamic planning on the constraint manifold with deep neural networks. IEEE Transactions on Robotics, 40:277–297, 2024. Search in Google Scholar

Koptev M., Figueroa N., and Billard A. Neural joint space implicit signed distance functions for reactive robot manipulator control. IEEE Robotics and Automation Letters, 8(2):480–487, 2022. Search in Google Scholar

Krawczyk A., Marciniak J., and Belter D. Comparison of machine learning techniques for self-collisions checking of manipulating robots. In 2023 27th International Conference on Methods and Models in Automation and Robotics (MMAR), pages 472–477, 2023. Search in Google Scholar

Kulecki B. and Belter D. Boosting machine learning techniques with positional encoding for robot collision checking,. In 13th International Workshop on Robot Motion and Control (RoMoCo), pages 90–95, 2024. Search in Google Scholar

Kulecki B. and Belter D. Positional encoding for robot neural self-collision checking. In Proceedings of the 5th Polish Conference on Artificial Intelligence, 2024. Search in Google Scholar

Meister D., Ogaki S., Benthin C., Doyle M. J., Guthe M., and Bittner J. A survey on bounding volume hierarchies for ray tracing. Computer Graphics Forum, 40(2):683–712, 2023. Search in Google Scholar

Mildenhall B., Srinivasan P. P., Tancik M., Barron J. T., Ramamoorthi R., and Ng R. NeRF: Representing scenes as neural radiance fields for view synthesis. In Vedaldi A., Bischof H., Brox T., and Frahm J.-M., editors, Computer Vision – ECCV 2020, pages 405–421, Cham, 2020. Springer International Publishing. Search in Google Scholar

Montaut L., Lidec Q. L., Bambade A., Petrik V., Sivic J., and Carpentier J. Differentiable collision detection: a randomized smoothing approach. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 3240–3246, 2023. Search in Google Scholar

Müller T., Evans A., Schied C., and Keller A. Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph., 41(4):102:1–102:15, July 2022. Search in Google Scholar

Pan J., Chitta S., and Manocha D. FCL: A general purpose library for collision and proximity queries. In 2012 IEEE International Conference on Robotics and Automation, pages 3859–3866, 2012. Search in Google Scholar

Park J. J., Florence P., Straub J., Newcombe R., and Lovegrove S. DeepSDF: Learning continuous signed distance functions for shape representation. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 165–174, 2019. Search in Google Scholar

Park J. S. and Manocha D. Efficient probabilistic collision detection for non-gaussian noise distributions. IEEE Robotics and Automation Letters, 5(2):1024–1031, 2020. Search in Google Scholar

Press O., Smith N., and Lewis M. Train short, test long: Attention with linear biases enables input length extrapolation. In International Conference on Learning Representations, 2022. Search in Google Scholar

Raffel C., Shazeer N., Roberts A., Lee K., Narang S., Matena M., Zhou Y., Li W., and Liu P. J. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(1), Jan. 2020. Search in Google Scholar

Rahaman N., Baratin A., Arpit D., Dr¨axler F., Lin M., Hamprecht F. A., Bengio Y., and Courville A. C. On the spectral bias of neural networks. In International Conference on Machine Learning, 2018. Search in Google Scholar

Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6):386–408, 1958. Search in Google Scholar

Rosinol A., Leonard J. J., and Carlone L. NeRF-SLAM: Real-time dense monocular slam with neural radiance fields. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3437–3444, 2023. Search in Google Scholar

Su J., Ahmed M., Lu Y., Pan S., Bo W., and Liu Y. Roformer: Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024. Search in Google Scholar

Tancik M., Srinivasan P. P., Mildenhall B., Fridovich-Keil S., Raghavan N., Sing-hal U., Ramamoorthi R., Barron J. T., and Ng R. Fourier features let networks learn high frequency functions in low dimensional domains. In Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. Search in Google Scholar

Tracy K., Howell T. A., and Manchester Z. Differentiable collision detection for a set of convex primitives. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 3663–3670, 2023. Search in Google Scholar

Valouch D. and Faigl J. Caterpillar heuristic for gait-free planning with multi-legged robot. IEEE Robotics and Automation Letters, 8(8):5204–5211, 2023. Search in Google Scholar

Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser L., and Polosukhin I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, page 6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc. Search in Google Scholar

Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Informatique, Intelligence artificielle, Développement de logiciels