Accès libre

Comparative Analysis of Deep Learning and Decision Tree Approaches for Predicting Aircraft Engine Remaining Useful Life

, ,  et   
19 nov. 2024
À propos de cet article

Citez
Télécharger la couverture

Azadeh, A., Asadzadeh, S. M., Salehi, N., & Firoozi, M. (2015). Condition-based maintenance effectiveness for series-parallel power generation system – A combined Markovian simulation model. Reliability Engineering & System Safety, 142, 357–368. https://doi.org/10.1016/j.ress.2015.04.009 Azadeh A. Asadzadeh S. M. Salehi N. Firoozi M. ( 2015 ). Condition-based maintenance effectiveness for series-parallel power generation system – A combined Markovian simulation model . Reliability Engineering & System Safety , 142 , 357 368 . https://doi.org/10.1016/j.ress.2015.04.009 Search in Google Scholar

Ben Ali, J., Chebel-Morello, B., Saidi, L., Malinowski, S., & Fnaiech, F. (2015). Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network. Mechanical Systems and Signal Processing, 56, 150–172. https://doi.org/10.1016/j.ymssp.2014.10.014 Ben Ali J. Chebel-Morello B. Saidi L. Malinowski S. Fnaiech F. ( 2015 ). Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network . Mechanical Systems and Signal Processing , 56 , 150 172 . https://doi.org/10.1016/j.ymssp.2014.10.014 Search in Google Scholar

Benkedjouh, T., Medjaher, K., Zerhouni, N., & Rechak, S. (2013). Remaining useful life estimation based on nonlinear feature reduction and support vector regression. Engineering Applications of Artificial Intelligence, 26(7), 1751–1760. https://doi.org/10.1016/j.engappai.2013.02.006 Benkedjouh T. Medjaher K. Zerhouni N. Rechak S. ( 2013 ). Remaining useful life estimation based on nonlinear feature reduction and support vector regression . Engineering Applications of Artificial Intelligence , 26 ( 7 ), 1751 1760 . https://doi.org/10.1016/j.engappai.2013.02.006 Search in Google Scholar

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014 Chai T. Draxler R. R. ( 2014 ). Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature . Geoscientific Model Development , 7 ( 3 ), 1247 1250 . https://doi.org/10.5194/gmd-7-1247-2014 Search in Google Scholar

Charbuty, B., & Abdulazeez, A. (2021). Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends, 2(01), 20–28. https://doi.org/10.38094/jastt20165 Charbuty B. Abdulazeez A. ( 2021 ). Classification based on decision tree algorithm for machine learning . Journal of Applied Science and Technology Trends , 2 ( 01 ), 20 28 . https://doi.org/10.38094/jastt20165 Search in Google Scholar

Cubillo, A., Perinpanayagam, S., & Esperon-Miguez, M. (2016). A review of physicsbased models in prognostics: Application to gears and bearings of rotating machinery. Advances in Mechanical Engineering, 8(8), 1–21. https://doi.org/10.1177/1687814016664660 Cubillo A. Perinpanayagam S. Esperon-Miguez M. ( 2016 ). A review of physicsbased models in prognostics: Application to gears and bearings of rotating machinery . Advances in Mechanical Engineering , 8 ( 8 ), 1 21 . https://doi.org/10.1177/1687814016664660 Search in Google Scholar

De Oña, R., Eboli, L., & Mazzulla, G. (2014). Key factors affecting rail service quality in Northern Italy: A decision tree approach. Transport, 29(1), 75–83. https://doi.org/10.3846/16484142.2014.898216 De Oña R. Eboli L. Mazzulla G. ( 2014 ). Key factors affecting rail service quality in Northern Italy: A decision tree approach . Transport , 29 ( 1 ), 75 83 . https://doi.org/10.3846/16484142.2014.898216 Search in Google Scholar

DeCastro, J. A., Litt, J. S., & Frederick, D. K. (2008). A modular aero-propulsion system simulation of a large commercial aircraft engine. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. https://doi.org/10.2514/6.2008-4579 DeCastro J. A. Litt J. S. Frederick D. K. ( 2008 ). A modular aero-propulsion system simulation of a large commercial aircraft engine . 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit . https://doi.org/10.2514/6.2008-4579 Search in Google Scholar

Elsheikh, A., Yacout, S., & Ouali, M. S. (2019). Bidirectional handshaking LSTM for remaining useful life prediction. Neurocomputing, 323, 148–156. https://doi.org/10.1016/j.neucom.2018.09.076 Elsheikh A. Yacout S. Ouali M. S. ( 2019 ). Bidirectional handshaking LSTM for remaining useful life prediction . Neurocomputing , 323 , 148 156 . https://doi.org/10.1016/j.neucom.2018.09.076 Search in Google Scholar

Frederick, D. K., DeCastro, J. A., & Litt, J. S. (2007). User’s guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS). NASA Technical Reports Server (NTRS). https://ntrs.nasa.gov/citations/20070034949 Frederick D. K. DeCastro J. A. Litt J. S. ( 2007 ). User’s guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) . NASA Technical Reports Server (NTRS) . https://ntrs.nasa.gov/citations/20070034949 Search in Google Scholar

Gebraeel, N., Lawley, M., Liu, R., & Parmeshwaran, V. (2004). Residual life predictions from vibration-based degradation signals: A neural network approach. IEEE Transactions on Reliability, 51(3), 694–700. Gebraeel N. Lawley M. Liu R. Parmeshwaran V. ( 2004 ). Residual life predictions from vibration-based degradation signals: A neural network approach . IEEE Transactions on Reliability , 51 ( 3 ), 694 700 . Search in Google Scholar

Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017). Convolutional sequence to sequence learning. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Vol. 1), 562–570. https://arxiv.org/abs/1705.03122 Gehring J. Auli M. Grangier D. Yarats D. Dauphin Y. N. ( 2017 ). Convolutional sequence to sequence learning . Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Vol. 1 ), 562 570 . https://arxiv.org/abs/1705.03122 Search in Google Scholar

Gonzalez, T. F. (2007). Handbook of approximation algorithms and metaheuristics. Chapman and Hall/CRC. https://doi.org/10.1201/9781420010749 Gonzalez T. F. ( 2007 ). Handbook of approximation algorithms and metaheuristics . Chapman and Hall/CRC . https://doi.org/10.1201/9781420010749 Search in Google Scholar

Heimes, F. O. (2008). Recurrent neural networks for remaining useful life estimation. 2008 International Conference on Prognostics and Health Management (PHM 2008). https://doi.org/10.1109/PHM.2008.4711422 Heimes F. O. ( 2008 ). Recurrent neural networks for remaining useful life estimation . 2008 International Conference on Prognostics and Health Management (PHM 2008) . https://doi.org/10.1109/PHM.2008.4711422 Search in Google Scholar

Heng, A., Zhang, S., Tan, A. C. C., & Mathew, J. (2009). Rotating machinery prognostics: State of the art, challenges, and opportunities. Mechanical Systems and Signal Processing, 23(3), 724–739. https://doi.org/10.1016/j.ymssp.2008.06.007 Heng A. Zhang S. Tan A. C. C. Mathew J. ( 2009 ). Rotating machinery prognostics: State of the art, challenges, and opportunities . Mechanical Systems and Signal Processing , 23 ( 3 ), 724 739 . https://doi.org/10.1016/j.ymssp.2008.06.007 Search in Google Scholar

Johnson, R., & Zhang, T. (2017). Deep pyramid convolutional neural networks for text categorization. ACL 2017 - 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Vol. 1), 562–570. https://doi.org/10.18653/v1/P17-1052 Johnson R. Zhang T. ( 2017 ). Deep pyramid convolutional neural networks for text categorization . ACL 2017-55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Vol. 1 ), 562 570 . https://doi.org/10.18653/v1/P17-1052 Search in Google Scholar

Jouin, M., Gouriveau, R., Hissel, D., Péra, M. C., & Zerhouni, N. (2016). Degradations analysis and aging modeling for health assessment and prognostics of PEMFC. Reliability Engineering & System Safety, 148, 78–95. https://doi.org/10.1016/j.ress.2015.12.003 Jouin M. Gouriveau R. Hissel D. Péra M. C. Zerhouni N. ( 2016 ). Degradations analysis and aging modeling for health assessment and prognostics of PEMFC . Reliability Engineering & System Safety , 148 , 78 95 . https://doi.org/10.1016/j.ress.2015.12.003 Search in Google Scholar

Kali, Y., & Linn, M. (2010). Science. In International Encyclopedia of Education (3rd ed., pp. 468–474). https://doi.org/10.1016/B978-0-08-044894-7.00081-6 Kali Y. Linn M. ( 2010 ). Science . In International Encyclopedia of Education ( 3rd ed., pp. 468 474 ). https://doi.org/10.1016/B978-0-08-044894-7.00081-6 Search in Google Scholar

Krizhevsky, B. A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90. Krizhevsky B. A. Sutskever I. Hinton G. E. ( 2012 ). ImageNet classification with deep convolutional neural networks . Communications of the ACM , 60 ( 6 ), 84 90 . Search in Google Scholar

Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems – Reviews, methodology, and applications. Mechanical Systems and Signal Processing, 42(1–2), 314–334. https://doi.org/10.1016/j.ymssp.2013.06.004 Lee J. Wu F. Zhao W. Ghaffari M. Liao L. Siegel D. ( 2014 ). Prognostics and health management design for rotary machinery systems – Reviews, methodology, and applications . Mechanical Systems and Signal Processing , 42 ( 1–2 ), 314 334 . https://doi.org/10.1016/j.ymssp.2013.06.004 Search in Google Scholar

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal Processing, 104, 799–834. https://doi.org/10.1016/j.ymssp.2017.11.016 Lei Y. Li N. Guo L. Li N. Yan T. Lin J. ( 2018 ). Machinery health prognostics: A systematic review from data acquisition to RUL prediction . Mechanical Systems and Signal Processing , 104 , 799 834 . https://doi.org/10.1016/j.ymssp.2017.11.016 Search in Google Scholar

Li, Y., Zhang, S., Wang, X., Liang, B., & Lu, W. (2019). Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews, 113, Article 109254. https://doi.org/10.1016/j.rser.2019.109254 Li Y. Zhang S. Wang X. Liang B. Lu W. ( 2019 ). Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review . Renewable and Sustainable Energy Reviews , 113 , Article 109254 . https://doi.org/10.1016/j.rser.2019.109254 Search in Google Scholar

Liao, L., & Köttig, F. (2014). Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Transactions on Reliability, 63(1), 191–207. https://doi.org/10.1109/TR.2014.2299152 Liao L. Köttig F. ( 2014 ). Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction . IEEE Transactions on Reliability , 63 ( 1 ), 191 207 . https://doi.org/10.1109/TR.2014.2299152 Search in Google Scholar

Liao, L., Jin, W., & Pavel, R. (2016). Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment. IEEE Transactions on Industrial Electronics, 63(11), 7076–7083. https://doi.org/10.1109/TIE.2016.2586442 Liao L. Jin W. Pavel R. ( 2016 ). Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment . IEEE Transactions on Industrial Electronics , 63 ( 11 ), 7076 7083 . https://doi.org/10.1109/TIE.2016.2586442 Search in Google Scholar

Navathe, S. B., Wu, W., Shekhar, S., Du, X., Wang, X. S., & Xiong, H. (2016). Database systems for advanced applications: 21st International Conference, DASFAA 2016, Dallas, TX, USA, April 16–19, 2016, Proceedings, Part I. Springer. https://doi.org/10.1007/978-3-319-32025-0 Navathe S. B. Wu W. Shekhar S. Du X. Wang X. S. Xiong H. ( 2016 ). Database systems for advanced applications: 21st International Conference, DASFAA 2016, Dallas, TX, USA, April 16-19, 2016, Proceedings, Part I . Springer . https://doi.org/10.1007/978-3-319-32025-0 Search in Google Scholar

Pecht, M., & Gu, J. (2009). Physics-of-failure-based prognostics for electronic products. Transactions of the Institute of Measurement and Control, 31(3–4), 309–322. https://doi.org/10.1177/0142331208092031 Pecht M. Gu J. ( 2009 ). Physics-of-failure-based prognostics for electronic products . Transactions of the Institute of Measurement and Control , 31 ( 3–4 ), 309 322 . https://doi.org/10.1177/0142331208092031 Search in Google Scholar

Qian, Y., Yan, R., & Gao, R. X. (2017). A multi-time scale approach to remaining useful life prediction in rolling bearing. Mechanical Systems and Signal Processing, 83, 549– 567. https://doi.org/10.1016/j.ymssp.2016.06.031 Qian Y. Yan R. Gao R. X. ( 2017 ). A multi-time scale approach to remaining useful life prediction in rolling bearing . Mechanical Systems and Signal Processing , 83 , 549 567 . https://doi.org/10.1016/j.ymssp.2016.06.031 Search in Google Scholar

Rezaeian Jouybari, B., & Shang, Y. (2020). Deep learning for prognostics and health management: State of the art, challenges, and opportunities. Measurement: Journal of the International Measurement Confederation, 163, Article 107929. https://doi.org/10.1016/j.measurement.2020.107929 Rezaeian Jouybari B. Shang Y. ( 2020 ). Deep learning for prognostics and health management: State of the art, challenges, and opportunities . Measurement: Journal of the International Measurement Confederation , 163 , Article 107929 . https://doi.org/10.1016/j.measurement.2020.107929 Search in Google Scholar

Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). Damage propagation modeling for aircraft engine run-to-failure simulation. 2008 International Conference on Prognostics and Health Management (PHM 2008). https://doi.org/10.1109/PHM.2008.4711414 Saxena A. Goebel K. Simon D. Eklund N. ( 2008 ). Damage propagation modeling for aircraft engine run-to-failure simulation . 2008 International Conference on Prognostics and Health Management (PHM 2008) . https://doi.org/10.1109/PHM.2008.4711414 Search in Google Scholar

Shenfield, A., & Howarth, M. (2020). A novel deep learning model for the detection and identification of rolling element-bearing faults. Sensors (Switzerland), 20(18), Article 5112. https://doi.org/10.3390/s20185112 Shenfield A. Howarth M. ( 2020 ). A novel deep learning model for the detection and identification of rolling element-bearing faults . Sensors (Switzerland) , 20 ( 18 ), Article 5112 . https://doi.org/10.3390/s20185112 Search in Google Scholar

Si, X. S., Wang, W., Hu, C. H., & Zhou, D. H. (2011). Remaining useful life estimation – A review on the statistical data-driven approaches. European Journal of Operational Research, 213(1), 1–14. Si X. S. Wang W. Hu C. H. Zhou D. H. ( 2011 ). Remaining useful life estimation – A review on the statistical data-driven approaches . European Journal of Operational Research , 213 ( 1 ), 1 14 . Search in Google Scholar

Sikorska, J. Z., Hodkiewicz, M., & Ma, L. (2011). Prognostic modeling options for remaining useful life estimation by industry. Mechanical Systems and Signal Processing, 25(5), 1803–1836. https://doi.org/10.1016/j.ymssp.2010.11.018 Sikorska J. Z. Hodkiewicz M. Ma L. ( 2011 ). Prognostic modeling options for remaining useful life estimation by industry . Mechanical Systems and Signal Processing , 25 ( 5 ), 1803 1836 . https://doi.org/10.1016/j.ymssp.2010.11.018 Search in Google Scholar

Sishi, M., & Telukdarie, A. (2021). The application of decision tree regression to optimize business processes. Proceedings of the International Conference on Industrial Engineering and Operations Management (No. Dm), 48–57. Sishi M. Telukdarie A. ( 2021 ). The application of decision tree regression to optimize business processes . Proceedings of the International Conference on Industrial Engineering and Operations Management (No. Dm), 48 57 . Search in Google Scholar

Stein, G., Chen, B., Wu, A. S., & Hua, K. A. (2005). Decision tree classifier for network intrusion detection with GA-based feature selection. Proceedings of the Annual Southeast Conference (Vol. 2), 2136–2141. https://doi.org/10.1145/1167253.1167288 Stein G. Chen B. Wu A. S. Hua K. A. ( 2005 ). Decision tree classifier for network intrusion detection with GA-based feature selection . Proceedings of the Annual Southeast Conference (Vol. 2 ), 2136 2141 . https://doi.org/10.1145/1167253.1167288 Search in Google Scholar

Suah, F. B. M. (2017). Preparation and characterization of a novel Co(II) optode based on polymer inclusion membrane. Analytical Chemistry Research, 12, 40–46. https://doi.org/10.1016/j.ancr.2017.02.001 Suah F. B. M. ( 2017 ). Preparation and characterization of a novel Co(II) optode based on polymer inclusion membrane . Analytical Chemistry Research , 12 , 40 46 . https://doi.org/10.1016/j.ancr.2017.02.001 Search in Google Scholar

Tian, Z. (2012). An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. Journal of Intelligent Manufacturing, 23(2), 227–237. https://doi.org/10.1007/s10845-009-0356-9 Tian Z. ( 2012 ). An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring . Journal of Intelligent Manufacturing , 23 ( 2 ), 227 237 . https://doi.org/10.1007/s10845-009-0356-9 Search in Google Scholar

Tian, Z., Wong, L., & Safaei, N. (2010). A neural network approach for remaining useful life prediction utilizing both failure and suspension histories. Mechanical Systems and Signal Processing, 24(5), 1501–1514. Tian Z. Wong L. Safaei N. ( 2010 ). A neural network approach for remaining useful life prediction utilizing both failure and suspension histories . Mechanical Systems and Signal Processing , 24 ( 5 ), 1501 1514 . Search in Google Scholar

Xiao, H., Yuan, K., & Zhan, Z. (2022). System reliability analysis based on dependent Kriging predictions and parallel learning strategy. Reliability Engineering & System Safety, 218, Article 108198. https://doi.org/10.1016/j.ress.2022.108198 Xiao H. Yuan K. Zhan Z. ( 2022 ). System reliability analysis based on dependent Kriging predictions and parallel learning strategy . Reliability Engineering & System Safety , 218 , Article 108198 . https://doi.org/10.1016/j.ress.2022.108198 Search in Google Scholar

Yan, R., Ma, Z., Zhao, Y., & Kokogiannakis, G. (2016). A decision tree-based data-driven diagnostic strategy for air handling units. Energy and Buildings, 133, 37–45. https://doi.org/10.1016/j.enbuild.2016.09.039 Yan R. Ma Z. Zhao Y. Kokogiannakis G. ( 2016 ). A decision tree-based data-driven diagnostic strategy for air handling units . Energy and Buildings , 133 , 37 45 . https://doi.org/10.1016/j.enbuild.2016.09.039 Search in Google Scholar

Zhang, S., Peng, H., Fu, J., Lu, Y., & Luo, J. (2021). Multi-scale 2D temporal adjacency networks for moment localization with natural language. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3120745 Zhang S. Peng H. Fu J. Lu Y. Luo J. ( 2021 ). Multi-scale 2D temporal adjacency networks for moment localization with natural language . IEEE Transactions on Pattern Analysis and Machine Intelligence . https://doi.org/10.1109/TPAMI.2021.3120745 Search in Google Scholar

Zhao, Z., Liang, B., Wang, X., & Lu, W. (2017). Remaining useful life prediction of aircraft engine based on degradation pattern learning. Reliability Engineering & System Safety, 164(457), 74–83. https://doi.org/10.1016/j.ress.2017.02.007 Zhao Z. Liang B. Wang X. Lu W. ( 2017 ). Remaining useful life prediction of aircraft engine based on degradation pattern learning . Reliability Engineering & System Safety , 164 ( 457 ), 74 83 . https://doi.org/10.1016/j.ress.2017.02.007 Search in Google Scholar

Langue:
Anglais
Périodicité:
1 fois par an
Sujets de la revue:
Ingénierie, Présentations et aperçus, Ingénierie, autres