Accès libre

Influence of the Fatigue Load Level and the Hole Diameter on the Laminate Structure’s Fatigue Performance

À propos de cet article

Citez

Damage tolerance of composite aircraft structure is one of the main areas of research, important when a new product is being developed. There are a number of variables, such as damage characteristics (dent depth, delamination area) and loading parameters (load type, amplitude of cyclic loading, load sequence) that need to be investigated experimentally [1]. These tests of composite materials are usually performed at an element level and are carried out in order to validate the analytical model, developed to predict the full-scale component’s behaviour. The paper presents the results of compression testing of the [36/55/9] carbon fibre/epoxy laminate, manufactured with the Automated Fibre Placement technology (AFP) and subjected to static and fatigue loads. The laminate compression loading mode was achieved through sandwich 4-point flexure. At the stage of fatigue testing, two parameters were investigated: the damage size, simulated by the hole diameter and the fatigue load level. Based on the test results, the laminate fatigue load limit equal to 75% of the OHC failure load was evaluated. By collating the static and fatigue tests results, the damage tolerance characteristic of the considered laminate was created.

eISSN:
2300-7591
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Engineering, Introductions and Overviews, other