À propos de cet article

Citez

Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht BD. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Molecular Cell 27, 53–66, 2007. Search in Google Scholar

Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luis A, McCarthy N, Montibeller L, More S, Papaioannou A, Puschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Munoz-Pinedo C, Rehm M, Chevet E, Samali A. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J 286, 241–278, 2019. Search in Google Scholar

Anderson DD, Quintero CM, Stover PJ. Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria. Proc Natl Acad Sci USA 108, 15163–15168, 2011. Search in Google Scholar

Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M, Favereaux A, Maitre M, Gaiser T, von Deimling A, Czabanka M, Vajkoczy P, Chevet E, Bikfalvi A, Moenner M. A shift from an angiogenic to invasive phenotype induced in malignant glioma by inhibition of the unfolded protein response sensor IRE1. Proc Natl Acad Sci USA 107, 15553–15558, 2010. Search in Google Scholar

Auf G, Jabouille A, Delugin M, Guerit S, Pineau R, North S, Platonova N, Maitre M, Favereaux A, Vajkoczy P, Seno M, Bikfalvi A, Minchenko D, Minchenko O, Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1alpha and promotes autocrine growth through EGF receptor. BMC Cancer 13, 597, 2013. Search in Google Scholar

Avril T, Vauleon E, Chevet E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis 6, e373, 2017. Search in Google Scholar

Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, Wang ZV, Zorzano A, Hill JA, Jaimovich E, Quest AF, Lavandero S. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int Rev Cell Mol Biol 301, 215–290, 2013. Search in Google Scholar

Chevet E, Hetz C, Samali A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov 5, 586–597, 2015. Search in Google Scholar

Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumor. Nat Rev Cancer 8, 705–713, 2008. Search in Google Scholar

Doultsinos D, Avril T, Lhomond S, Dejeans N, Guedat P, Chevet E. Control of the unfolded protein response in health and disease. SLAS Discov 22, 787–800, 2017. Search in Google Scholar

Ducker GS, Ghergurovich JM, Mainolfi N, Suri V, Jeong SK, Hsin-Jung Li S, Friedman A, Manfredi MG, Gitai Z, Kim H, Rabinowitz JD. Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma. Proc Natl Acad Sci USA 114, 11404–11409, 2017. Search in Google Scholar

Engel AL, Lorenz NI, Klann K, Munch C, Depner C, Steinbach JP, Ronellenfitsch MW, Luger AL. Serine-dependent redox homeostasis regulates glioblastoma cell survival. Br J Cancer 122, 1391–1398, 2020. Search in Google Scholar

Giardina G, Brunotti P, Fiascarelli A, Cicalini A, Costa MG, Buckle AM, di Salvo ML, Giorgi A, Marani M, Paone A, Rinaldo S, Paiardini A, Contestabile R, Cutruzzola F. How pyridoxal 5’-phosphate differentially regulates human cytosolic and mitochondrial serine hydroxymethyltransferase oligomeric state. FEBS J 282, 1225–1241, 2015. Search in Google Scholar

He L, Ding Y, Zhou X, Li T, Yin Y. Serine signaling governs metabolic homeostasis and health. Trends Endocrinol Metab 34, 361–372, 2023. Search in Google Scholar

Hennequart M, Labuschagne CF, Tajan M, Pilley SE, Cheung EC, Legrave NM, Driscoll PC, Vousden KH. The impact of physiological metabolite levels on serine uptake, synthesis and utilization in cancer cells. Nat Commun 12, 6176, 2021. Search in Google Scholar

Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 21, 421–438, 2020. Search in Google Scholar

Krasnytska DA, Viletska YM, Minchenko DO, Khita OO, Tsymbal DO, Cherednychenko AA, Kozynkevych HE, Oksiom NS, Minchenko OH. ERN1 dependent impact of glucose and glutamine deprivations on PBX3, PBXIP1, PAX6, MEIS1, and MEIS2 gene expressions in U87 glioma cells. Endocr Reg 57, 37–47, 2023. Search in Google Scholar

Li AM, Ye J. Reprogramming of serine, glycine and one-carbon metabolism in cancer. Biochim Biophys Acta Mol Basis Dis 1866, 165841, 2020. Search in Google Scholar

Logue SE, McGrath EP, Cleary P, Greene S, Mnich K, Almanza A, Chevet E, Dwyer RM, Oommen A, Legembre P, Godey F, Madden EC, Leuzzi B, Obacz J, Zeng Q, Patterson JB, Jager R, Gorman AM, Samali A. Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nat Commun 9, 3267, 2018. Search in Google Scholar

Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, Vousden KH. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542–546, 2013. Search in Google Scholar

Mattaini KR, Sullivan MR, Vander Heiden MG. The importance of serine metabolism in cancer. J Cell Biol 214, 249–257, 2016. Search in Google Scholar

Minchenko A, Caro J. Regulation of endothelin-1 gene expression in human microvascular endothelial cells by hypoxia and cobalt: role of hypoxia responsible element. Mol Cell Biochem 208, 53–62, 2000. Search in Google Scholar

Minchenko A, Leshchinsky I, Opentanova I, Sang N, Srinivas V, Armstead V, Caro J. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem 277, 6183–6187, 2002. Search in Google Scholar

Minchenko O, Opentanova I, Minchenko D, Ogura T, Esumi H. Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 gene via hypoxia-inducible factor-1alpha activation. FEBS Lett 576, 14–20, 2004. Search in Google Scholar

Minchenko OH, Tsymbal DO, Minchenko DO, Moenner M, Kovalevska OV, Lypova NM. Inhibition of kinase and endoribonuclease activity of ERN1/IRE1α affects expression of proliferation-related genes in U87 glioma cells. Cell Pathology 2, 18–29, 2015. Search in Google Scholar

Minchenko DO, Tsymbal DO, Riabovol OO, Viletska YM, Lahanovska YO, Sliusar MY, Bezrodnyi BH, Minchenko OH. Hypoxic regulation of EDN1, EDNRA, EDNRB, and ECE1 gene expressions in IRE1 knockdown U87 glioma cells. Endocr Reg 53, 250–262, 2019. Search in Google Scholar

Minchenko DO, Khita OO, Tsymbal DO, Danilovskyi SV, Rudnytska OV, Halkin OV, Kryvdiuk IV, Smeshkova MV, Yakymchuk MM, Bezrodnyi BH, Minchenko OH. Expression of IDE and PITRM1 genes in IRE1 knockdown U87 glioma cells: effect of hypoxia and glucose deprivation. Endocr Reg 54, 183–195, 2020. Search in Google Scholar

Minchenko OH, Tsymbal DO, Khita OO, Minchenko DO. Inhibition of ERN1 signaling is important for the suppression of tumor growth. Clin Cancer Drugs 8, 27–38, 2021. Search in Google Scholar

Minchenko OH, Sliusar MY, Khita OO, Minchenko DO, Viletska YM, Halkin OV, Ledvadna LO, Cherednychenko AA, Khikhlo YP. Inhibition of signaling protein ERN1 increases the sensitivity of serine synthesis gene expressions to glucose and glutamine deprivations in U87MG glioblastoma cells. Endocr Reg 58, 91–100, 2024. Search in Google Scholar

Minton DR, Nam M, McLaughlin DJ, Shin J, Bayraktar EC, Alvarez SW, Sviderskiy VO, Papagiannakopoulos T, Sabatini DM, Birsoy K, Possemato R. Serine catabolism by SHMT2 is required for proper mitochondrial translation initiation and maintenance of formylmethionyl-tRNAs. Mol Cell 69, 610–621.e5, 2018. Search in Google Scholar

Morscher RJ, Ducker GS, Li SH, Mayer JA, Gitai Z, Sperl W, Rabinowitz JD. Mitochondrial translation requires folate-dependent tRNA methylation. Nature 554, 128–132, 2018. Search in Google Scholar

Nguyen TH, Vemu PL, Hoy GE, Boudjadi S, Chatterjee B, Shern JF, Khan J, Sun W, Barr FG. Serine hydroxymethyltransferase 2 expression promotes tumorigenesis in rhabdomyosarcoma with 12q13-q14 amplification. J Clin Invest 131, e138022, 2021. Search in Google Scholar

Obacz J, Avril T, Le Reste PJ, Urra H, Quillien V, Hetz C, Chevet E. Endoplasmic reticulum proteostasis in glioblastoma-From molecular mechanisms to therapeutic perspectives. Sci Signal 10, eaal2323, 2017. Search in Google Scholar

Papaioannou A, Chevet E. Driving cancer tumorigenesis and metastasis through UPR signaling. Curr Top Microbiol Immunol 414, 159–192, 2018. Search in Google Scholar

Qiao Z, Li Y, Cheng Y, Li S, Liu S. SHMT2 regulates esophageal cancer cell progression and immune Escape by mediating m6A modification of c-myc. Cell Biosci 13, 203, 2023. Search in Google Scholar

Rudnytska OV, Khita OO, Minchenko, Tsymbal DO, Yefimova YV, Sliusar MY, Minchenko OH. The low doses of SWCNTs exhibit a genotoxic effect on the normal human astrocytes by disrupting the functional integrity of the genome. Curr Res Toxicol 2, 64–71, 2021. Search in Google Scholar

Semenza GL. A compendium of proteins that interact with HIF-1α. Exp Cell Res 356, 128–135, 2017. Search in Google Scholar

Shan Y, Liu D, Li Y, Wu C, Ye Y. The expression and clinical significance of serine hydroxymethyltransferase2 in gastric cancer. PeerJ 12, e16594, 2024. Search in Google Scholar

Sliusar MY, Minchenko DO, Khita OO, Tsymbal DO, Viletska YM, Luzina OY, Danilovskyi SV, Ratushna OO, Minchenko OH. Hypoxia controls the expression of genes responsible for serine synthesis in U87MG cells on ERN1-dependent manner. Endocr Reg 23, 57, 252–261, 2023. Search in Google Scholar

Sun RC, Denko NC. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 19, 285–292, 2014. Search in Google Scholar

Tajan M, Hennequart M, Cheung EC, Zani F, Hock AK, Legrave N, Maddocks ODK, Ridgway RA, Athineos D, Suarez-Bonnet A, Ludwig RL, Novellasdemunt L, Angelis N, Li VSW, Vlachogiannis G, Valeri N, Mainolfi N, Suri V, Friedman, Manfredi M, Blyth K, Sansom OJ, Vousden KH. Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nat Commun 12, 366, 2021. Search in Google Scholar

Tedeschi PM, Markert EK, Gounder M, Lin H, Dvorzhinski D, Dolfi SC, Chan LL, Qiu J, DiPaola RS, Hirshfield KM, Boros LG, Bertino JR, Oltvai ZN, Vazquez A. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis 4, e877, 2013. Search in Google Scholar

Wang W, Wang M, Du T, Hou Z, You S, Zhang S, Ji M, Xue N, Chen X. SHMT2 promotes gastric cancer development through regulation of HIF1alpha/VEGF/STAT3 signaling. Int J Mol Sci 24, 7150, 2023. Search in Google Scholar

Xie SY, Shi DB, Ouyang Y, Lin F, Chen XY, Jiang TC, Xia W, Guo L, Lin HX. SHMT2 promotes tumor growth through VEGF and MAPK signaling pathway in breast cancer. Am J Cancer Res 12, 3405–3421, 2022. Search in Google Scholar

Yang M, Vousden KH. Serine and one-carbon metabolism in cancer. Nat Rev Cancer 16, 650–662, 2016. Search in Google Scholar

Zhang Y, Huang H, Liu P, Xie Y. NFYB increases chemosensitivity in glioblastoma by promoting HDAC5-mediated transcriptional inhibition of SHMT2. J Neuropathol Exp Neurol 82, 911–920, 2023. Search in Google Scholar