À propos de cet article

Citez

Agarwal S, Nagpure NS, Srivastava P, Kushwaha B, Kumar R, Pandey M, Srivastava S. In silico genome wide mining of conserved and novel miRNAs in the brain and pineal gland of Danio rerio using small RNA sequencing data. Genom Data 7, 46–53, 2015.10.1016/j.gdata.2015.11.013477860626981358 Search in Google Scholar

Agmal S, Till M, Norbert K, Stephan H. Molecular mechanisms of zinc oxide nanoparticle-induced genotoxicity short running title: genotoxicity of ZnO NPs. Materials 10, 1427, 2017.10.3390/ma10121427574436229240707 Search in Google Scholar

Ahmadi H, Ramezani M, Yazdian-Robati R, Behnam B, Azarkhiavi KR, Nia AH, Mokhtarzadeh A, Riahi MM, Razavi BM, Abnous K. Acute toxicity of functionalized single wall carbon nanotubes: a biochemical, histopathologic and proteomics approach. Chem Biol Interact 275, 196–209, 2017.10.1016/j.cbi.2017.08.00428807745 Search in Google Scholar

Auf G, Jabouille A, Delugin M, Guerit S, Pineau R, North S, Platonova N, Maitre M, Favereaux A, Vajkoczy P, Seno M, Bikfalvi A, Minchenko D, Minchenko O, Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor. BMC Cancer 13, 597, 2013.10.1186/1471-2407-13-597387867024330607 Search in Google Scholar

Barberet P, Chevet E, Dupuy D, Delville MH, Seznec H. In situ quantification of diverse titanium dioxide nanoparticles unveils selective endoplasmic reticulum stress-dependent toxicity. Nanotoxicology 11, 134–145, 2017.10.1080/17435390.2017.127880328044465 Search in Google Scholar

Bhattacharya M, Sharma AR, Sharma G, Patra BC, Nam JS, Chakraborty C, Lee SS. The crucial role and regulations of miRNAs in zebrafish development. Protoplasma 254, 17–31, 2017.10.1007/s00709-015-0931-126820151 Search in Google Scholar

Boran H, Ulutas G. Genotoxic effects and gene expression changes in larval zebrafish after exposure to ZnCl2 and ZnO nanoparticles. Dis Aquat Org 117, 205–214, 2016.10.3354/dao0294326758654 Search in Google Scholar

Brennan GP, Henshall DC. MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat Rev Neurol 16, 506–519, 2020.10.1038/s41582-020-0369-832546757 Search in Google Scholar

Cao Y, Long J, Liu L, He T, Jiang L, Zhao C, Li Z. A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure. Life Sci 186, 33–42, 2017.10.1016/j.lfs.2017.08.00328782531 Search in Google Scholar

Chen R, Huo L, Shi X, Bai R, Zhang Z, Zhao Y, Chang Y, Chen C. Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano 8, 2562–2574, 2014.10.1021/nn406184r24490819 Search in Google Scholar

Chen B, Hong W, Yang P, Tang Y, Zhao Y, Aguilar ZP, Xu H. Nano zinc oxide induced fetal mice growth restriction, based on oxide stress and endoplasmic reticulum stress. Nanomaterials 10, 259, 2020.10.3390/nano10020259707516632024284 Search in Google Scholar

Cho KHT, Xu B, Blenkiron C, Fraser M. Emerging roles of miRNAs in brain development and perinatal brain injury. Front Physiol 10, 227, 2019.10.3389/fphys.2019.00227644777730984006 Search in Google Scholar

Du ZW, Ma LX, Phillips C, Zhang SC. miR-200 and miR-96 families repress neural induction from human embryonic stem cells. Development 140, 2611–2618, 2013.10.1242/dev.092809366638623637338 Search in Google Scholar

Eldawud R, Wagner A, Dong C, Stueckle TA, Rojanasakul Y, Dinu CZ. Carbon nanotubes physicochemical properties influence the overall cellular behavior and fate. NanoImpact 9, 72–84, 2018.10.1016/j.impact.2017.10.006675395631544167 Search in Google Scholar

Feng W, Feng Y. MicroRNAs in neural cell development and brain diseases. Sci China Life Sci 54, 1103–1112, 2011.10.1007/s11427-011-4249-822227902 Search in Google Scholar

Francis A, Devasena T. Toxicity of carbon nanotubes: a review. Toxicol Indust Health 34, 200–210, 2018.10.1177/074823371774747229506458 Search in Google Scholar

Ge XL, Wang JL, Liu X, Zhang J, Liu C, Guo L. Inhibition of miR-19a protects neurons against ischemic stroke through modulating glucose metabolism and neuronal apoptosis. Cell Mol Biol Lett 24, 37, 2019.10.1186/s11658-019-0160-2654501831168302 Search in Google Scholar

Gizak A, Duda P, Pielka E, McCubrey JA, Rakus D. GSK3 and miRNA in neural tissue: From brain development to neurodegenerative diseases. Biochim Biophys Acta Mol Cell Res 1867, 18696, 2020.10.1016/j.bbamcr.2020.11869632165184 Search in Google Scholar

Goldewski J, Lenart J, Salinska E. MicroRNA in brain pathology: Neurodegeneration the other side of the brain cancer. Non-coding RNA 5, 20, 2019.10.3390/ncrna5010020646866030813461 Search in Google Scholar

Gu Y, Cheng S, Chen G, Shen Y, Li X, Jiang Q, Li J, Cao Y. The effects of endoplasmic reticulum stress inducer thapsigargin on the toxicity of ZnO or TiO2 nanoparticles to human endothelial cells. Toxicol Mech Methods 27, 191–200, 2017.10.1080/15376516.2016.127342927997269 Search in Google Scholar

Heim J, Felder E, Tahir MN, Kaltbeitzel A, Heinrich UR, Brochhausen C, Mailander V, Tremel W, Brieger J. Genotoxic effects of zinc oxide nanoparticles. Nanoscale 7, 8931–8938, 2015.10.1039/C5NR01167A25916659 Search in Google Scholar

Horsham JL, Ganda C, Kalinowski FC, Brown RA, Epis MR, Leedman PJ. MicroRNA-7: A miRNA with expanding roles in development and disease. Int J Biochem Cell Biol 69, 215–224, 2015.10.1016/j.biocel.2015.11.00126546742 Search in Google Scholar

Hou J, Liu H, Zhang S, Liu X, Hayat T, Alsaedi A, Wang X. Mechanism of toxic effects of Nano-ZnO on cell cycle of zebrafish (Danio rerio). Chemosphere 229, 206–213, 2019.10.1016/j.chemosphere.2019.04.21731078877 Search in Google Scholar

Hu H, Li L, Guo Q, Zong H, Yan Y, Yin Y, Wang Y, Oh Y, Feng Y, Wu Q, Gu N. RNA sequencing analysis shows that titanium dioxide nanoparticles induce endoplasmic reticulum stress, which has a central role in mediating plasma glucose in mice. Nanotoxicology 12, 341–356, 2018.10.1080/17435390.2018.144656029510645 Search in Google Scholar

Jiang T, Amadei CA, Gou N, Lin Y, Lan J, Vecitis CD, Gu AZ. Toxicity of single-walled carbon nanotubes (SWCNTs): effect of lengths, functional groups and electronic structures revealed by a quantitative toxicogenomics assay. Environ Sci Nano 7, 1348–1364, 2020.10.1039/D0EN00230E785365633537148 Search in Google Scholar

Kavosi A, Noei SHG, Madani S, Khalighfard S, Khodayari H, Mirzaei M, Kalhari MR, Yavarian M, Alizadeh AM, Falahati M. The toxicity and therapeutic effects of single- and multi-wall carbon nanotubes on mice breast cancer. Sci Rep 8, 8375, 2018.10.1038/s41598-018-26790-x597672629849103 Search in Google Scholar

Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9, 1274–1281, 2003.10.1261/rna.5980303137049113130141 Search in Google Scholar

Kobayashi N, Izumi H, Morimoto Y. Review of toxicity studies of carbon nanotubes. J Occup Health 59, 394–407, 2017.10.1539/joh.17-0089-RA563514828794394 Search in Google Scholar

Liu Y, Liu X, Wang Y, Yi C, Tian J, Liu K, Chu J. Protective effect of Lactobacillus plantarum on alcoholic liver injury and regulating of keap-Nrf2-ARE signaling pathway in zebrafish larvae. PLoS ONE 14, e0222339, 2019.10.1371/journal.pone.0222339673891531509586 Search in Google Scholar

Ma Q, Zhang L, Pearce WJ. MicroRNAs in brain development and cerebrovascular pathophysiology. Am J Physiol Cell Physiol 317, C3–C19, 2019.10.1152/ajpcell.00022.2019668975230840494 Search in Google Scholar

Matamala JM, Arias-Carrasco R, Sanchez C, Uhrig M, Bargsted L, Matus S, Maracaja-Coutinho V, Abarzua S, van Zundert B, Verdugo R, Manque P, Hetz C. Genome-wide circulating microRNA expression profiling reveals potential biomarkers for amyotrophic lateral sclerosis. Neurobiol Aging 64, 123–138, 2018.10.1016/j.neurobiolaging.2017.12.02029458840 Search in Google Scholar

Maurel M, Chevet E. Endoplasmic reticulum stress signaling: the microRNA connection. Am J Physiol Cell Physiol 304, C1117–C1126, 2013.10.1152/ajpcell.00061.201323515532 Search in Google Scholar

Mazzelli M, Maj C, Mariani N, Mora C, Begni V, Pariante CM, Riva MA, Cattaneo A, Cattane N. The long-term effects of early life stress on the modulation of miR-19 levels. Front Psych 11, 389, 2020.10.3389/fpsyt.2020.00389724391332499725 Search in Google Scholar

Minchenko OH, Tsymbal DO, Minchenko DO, Prylutska SV, Cherepanov VV, Prylutskyy YuI, Tsierkezos NG. Single-walled carbon nanotubes affect the expression of CCND2 gene in human U87 glioma cells. Materialwissench Werkstofftech 47, 180–188, 2016.10.1002/mawe.201600462 Search in Google Scholar

Minchenko OH, Tsymbal DO, Minchenko DO, Hnatiuk OS, Prylutskyy YI, Prylutska SV, Tsierkezos NG, Ritter U. Single-walled carbon nanotubes affect the expression of genes associated with immune response in normal human astrocytes. Toxicol Vitro 52, 122–130, 2018.10.1016/j.tiv.2018.06.01129906516 Search in Google Scholar

Mishima Y. Widespread roles of microRNAs during zebrafish development and beyond. Dev Growth Differ 54, 55–65, 2012.10.1111/j.1440-169X.2011.01306.x22150108 Search in Google Scholar

Moller P, Jacobsen NR. Weight of evidence analysis for assessing the genotoxic potential of carbon nanotubes. Crit Rev Toxicol 47, 867–884, 2017.10.1080/10408444.2017.136775528937307 Search in Google Scholar

Petri R, Malmevik J, Fasching L, Akerblom M, Jakobsson J. miRNAs in brain development. Exp Cell Res 21, 84–89, 2014.10.1016/j.yexcr.2013.09.02224099990 Search in Google Scholar

Rudnytska OV, Khita OO, Minchenko DO, Tsymbal DO, Yefimova YV, Sliusar MY, Minchenko OH. The low doses of SWCNTs exhibit a genotoxic effect on the normal human astrocytes by disrupting the functional integrity of the genome. Curr Res Toxicol 2, 64–71, 2021.10.1016/j.crtox.2021.02.001832063334345851 Search in Google Scholar

Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME. A brain-specific microRNA regulates dendritic spine development. Nature 439, 283–289, 2006.10.1038/nature0436716421561 Search in Google Scholar

Shapoval LM, Dmytrenko OV, Sagach VF, Prylutska SV, Khrapatiy SV, Zavodovskyi DO, Prylytskyy YuI, Tsierkezos N, Ritter U. Systemic administrations of water-dispersible single-walled carbon nanotubes: activation of NOS in spontaneously hypertensive rats. Neurophysiology 52, 101–109, 2020.10.1007/s11062-020-09858-1 Search in Google Scholar

Simon M, Saez G, Muggiolu G, Lavenas M, Le Trequesser Q, Michelet C, Deves G, Barberet P, Chevet E, Dupuy D, Delville MH, Seznec H. In situ quantification of diverse titanium dioxide nanoparticles unveils selective endoplasmic reticulum stress-dependent toxicity. Nanotoxicology 11, 134–145, 2017.10.1080/17435390.2017.127880328044465 Search in Google Scholar

Tejral G, Panyala NR, Havel J. Carbon nanotubes: toxicological impact on human health and environment. J Appl Biomed 7, 1–13, 2009.10.32725/jab.2009.001 Search in Google Scholar

Toyokuni S. Genotoxicity and carcinogenicity risk of carbon nanotubes. Adv Drug Deliv Rev 65, 2098–2110, 2013.10.1016/j.addr.2013.05.01123751780 Search in Google Scholar

Wang Y, Li G, Zhao L, Lv J. Long noncoding RNA HOTTIP alleviates oxygen-glucose deprivation-induced neuronal injury via modulating miR-143/hexokinase 2 pathway. J Cell Biochem 119, 10107–10117, 2018.10.1002/jcb.2734830129112 Search in Google Scholar

Wang YM, Song Z, Qu Y, Lu LQ. Down-regulated miR-21 promotes learning-memory recovery after brain injury. Int sJ Clin Exp Pathol 12, 916–921, 2019. Search in Google Scholar

Wang J, Liu K, Mo C, Minchenko OH, Zhang Y, Chen JR, Hsiao CD, Zhu Q, He Q. Nano-titanium nitride causes developmental toxicity in zebrafish through oxidative stress. Drug Chem Toxicol 2020a. Epub ahead of print.10.1080/01480545.2020.185376533297782 Search in Google Scholar

Wang H, Zheng X, Jin J, Zheng L, Guan T, Huo Y, Xie S, Wu Y, Chen W. LncRNA MALAT1 silencing protects against cerebral ischemia-reperfusion injury through miR-145 to regulate AQP4. J Biomed Sci 27, 40, 2020b.10.1186/s12929-020-00635-0705971932138732 Search in Google Scholar

Xue Y, Ouyang K, Huang J, Zhou Y, Ouyang H, Li H, Wang G, Wu Q, Wei C, Bi Y, Jiang L, Cai Z, Sun H, Zhang K, Zhang Y, Chen J, Fu XD. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152, 82–96, 2013.10.1016/j.cell.2012.11.045355202623313552 Search in Google Scholar

Yan H, Xue Z, Xie J, Dong Y, Ma Z, Sun X, Borga DK, Liu Z, Li J. Toxicity of carbon nanotubes as anti-tumor drug carriers. Int J Nanomed 14, 10179–10194, 2019.10.2147/IJN.S220087694663232021160 Search in Google Scholar

Yang M, Zhang M. Biodegradation of carbon nanotubes by macrophages. Front Mater 6, 225, 2019.10.3389/fmats.2019.00225 Search in Google Scholar

Yapijakis C. Regulatory role of microRNAs in brain development and function. Adv Exp Med Biol 1195, 237–247, 2020.10.1007/978-3-030-32633-3_3232468482 Search in Google Scholar

Zhu B, He W, Hu S, Kong R, Yang L. The fate and oxidative stress of different sized SiO2 nanoparticles in zebrafish (Danio rerio) larvae. Chemosphere 225, 705–712, 2019.10.1016/j.chemosphere.2019.03.09130904758 Search in Google Scholar

Zou H, Ding Y, Shi W, Xu X, Gong A, Zhang Z, Liu J. MicroRNA-29c/PTEN pathway is involved in mice brain development and modulates neurite outgrowth in PC12 cells. Cell Mol Neurobiol 35, 313–322, 2015.10.1007/s10571-014-0126-x25352418 Search in Google Scholar