À propos de cet article

Citez

Banegas I, Prieto I, Segarra AB, Vives F, de Gasparo M, Duran R, de Dios Luna J, Ramirez-Sanchez M. Bilateral distribution of enkephalinase activity in the medial prefrontal cortex differs between WKY and SHR rats unilaterally lesioned with 6-hydroxydopamine. Prog Neuropsychopharmacol Biol Psychiatry 75, 213–218, 2017.10.1016/j.pnpbp.2017.02.015Open DOISearch in Google Scholar

Bodnar RJ. Endogenous Opiates and Behavior: 2016. Peptides 101, 167–212. 2018.10.1016/j.peptides.2018.01.011Search in Google Scholar

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254, 1976.10.1016/0003-2697(76)90527-3942051Open DOISearch in Google Scholar

Chang GQ, Karatayev O, Ahsan R, Gaysinskaya V, Marwil Z, Leibowitz SF. Dietary fat stimulates endogenous enkephalin and dynorphin in the paraventricular nucleus: role of circulating triglycerides. Am J Physiol Endocrinol Metab 292, E561–E570, 2007.10.1152/ajpendo.00087.2006Search in Google Scholar

Chang GQ, Karatayev O, Barson JR, Chang SY, Leibowitz SF. Increased encephalin in brain of rats prone to overconsuming a fat-rich diet. Physiol Behav 101, 360–369, 2010.10.1016/j.physbeh.2010.06.005Search in Google Scholar

Corder G, Castro DC, Bruchas MR, Scherrer G. Endogenous and exogenous opioids in pain. Annu Rev Neurosci 41, 453–473, 2018.2985208310.1146/annurev-neuro-080317-061522Search in Google Scholar

Danziger RS. Aminopeptidase N in arterial hypertension. Heart Fail Rev 13, 293–298, 2007.10.1007/s10741-007-9061-ySearch in Google Scholar

de Gandarias JM, Casis L, Irazusta J, Echevarria E, Ramirez M. Changes of aminopeptidase activity levels in serum and brain during the estrous cycle of the rat. Horm Metab Res 20, 776, 1988.10.1055/s-2007-1010947Open DOISearch in Google Scholar

de Gandarias JM, Ramirez M, Zulaica J, Casis L. Aminopeptidase (arylamidase) activity in discrete areas of the rat brain: sex differences. Horm Metab Res 21, 285–286, 1989.10.1055/s-2007-1009215Open DOISearch in Google Scholar

Dominguez-Vias G, Aretxaga-Maza G, Prieto I, Segarra AB, Luna JD, de Gasparo M, Ramirez-Sanchez M. Light-dark influence of enkephalinase activity in hypothalamus and pituitary. Neuro Endocrinol Lett 39, 277–280, 2018.Search in Google Scholar

Folch J, Less M, Sloane-Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226, 497–509, 1957.10.1016/S0021-9258(18)64849-5Search in Google Scholar

Gibson AM, Biggins JA, Lauffart B, Mantle D, McDermott JR. Human brain leucyl aminopeptidase: isolation, characterization and specificity against some neuropeptides. Neuropeptides 19, 163–168, 1991.10.1016/0143-4179(91)90114-XOpen DOISearch in Google Scholar

Hardy SG, Haigler HJ. Prefrontal influences upon the midbrain: a possible route for pain modulation. Brain Res 339, 285–293, 1985.10.1016/0006-8993(85)90094-0Search in Google Scholar

Hashimoto M, Hossain S, Al Mamun A, Matsuzaki K, Arai H. Docosahexaenoic acid: one molecule diverse functions. Crit Rev Biotechnol 37, 579–597, 2017.10.1080/07388551.2016.1207153Search in Google Scholar

Henry MS, Gendron L, Tremblay ME, Drolet G. Enkephalins: Endogenous analgesics with an emerging role in stress resilience. Neural Plast 2017, 1546125, 2017.10.1155/2017/1546125Search in Google Scholar

Hernandez J, Prieto I, Segarra AB, de Gasparo M, Wangensteen R, Villarejo AB, Banegas I, Vives F, Cobo J, Ramirez-Sanchez M. Interaction of neuropeptidase activities in cortico-limbic regions after acute restraint stress. Behav Brain Res 287, 42–48, 2015.10.1016/j.bbr.2015.03.036Search in Google Scholar

Hersh LB. Characterization of membrane-bound aminopeptidases from rat brain: identification of the enkephalin-degrading aminopeptidase. J Neurochem 44, 1427–1435, 1985.10.1111/j.1471-4159.1985.tb08779.xOpen DOISearch in Google Scholar

Hersh LB, Aboukhair N, Watson S. Immunohistochemical localization of aminopeptidase M in rat brain and periphery: relationship of enzyme localization and enkephalin metabolism. Peptides 8, 523–532, 1987.288920110.1016/0196-9781(87)90019-2Search in Google Scholar

Iuliano L, Pacelli A, Ciacciarelli M, Zerbinati C, Fagioli S, Piras F, Orfei MD, Bossu P, Pazzelli F, Serviddio G, Caltagirone C, Spalletta G. Plasma fatty acid lipidomics in amnestic mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 36, 545–553, 2013.2363540510.3233/JAD-122224Search in Google Scholar

Lepage G, Roy CG. Direct transesterification of all classes of lipids in a one step reaction. J Lipid Res 27, 114–120, 1986.10.1016/S0022-2275(20)38861-1Search in Google Scholar

Matsumoto H, Nagasaka T, Hattori A, Rogi T, Tsuruoka N, Mizutani S, Tsujimoto M. Expression of placental leucine aminopeptidase/oxytocinase in neuronal cells and its action on neuronal peptides. Eur J Biochem 268, 3259–3266, 2001.10.1046/j.1432-1327.2001.02221.x11389728Search in Google Scholar

Mendez IA, Ostlund SB, Maidment NT, Murphy NP. Involvement of endogenous enkephalins and β-endorphin in feeding and diet-induced obesity. Neuropsychopharmacology 40, 2103–2112, 2015.2575476010.1038/npp.2015.67Search in Google Scholar

Moon ML, Joesting JJ, Lawson MA, Chiu GS, Blevins NA, Kwakwa KA, Freund GG. The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice. Metabolism 63, 1131–1140, 2014.2501652010.1016/j.metabol.2014.06.002Search in Google Scholar

Narita M, Kaneko C, Miyoshi K, Nagumo Y, Kuzumaki N, Nakajima M, Nanjo K, Matsuzawa K, Yamazaki M, Suzuki T. Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala. Neuropsychopharmacology 31, 739–750, 2006.10.1038/sj.npp.130085816123756Open DOISearch in Google Scholar

Nasaruddin ML, Pan X, McGuinness B, Passmore P, Kehoe PG, Holscher C, Graham SF, Green BD. Evidence that parietal lobe fatty acids may be more profoundly affected in moderate Alzheimer’s disease (AD) pathology than in severe AD pathology. Metabolites 8, pii: E69, 2018.10.3390/metabo8040069Search in Google Scholar

Paxinos G, Watson C. The Rat brain in stereotaxic coordinates. 4th ed. London: Academic Press, 1998.Search in Google Scholar

Ramirez M, Prieto I, Banegas I, Segarra AB, Alba F. Neuropeptidases. Methods Mol Biol 789, 287–294, 2011.10.1007/978-1-61779-310-3_18Search in Google Scholar

Ruiz-Sanz JI, Navarro R, Martinez R, Martin C, Lacort M, Matorras R, Ruiz-Larrea MB. 17beta-estradiol affects in vivo the low density lipoprotein composition, particle size, and oxidizability. Free Radic Biol Med 31, 391–397, 2001.10.1016/S0891-5849(01)00596-2Search in Google Scholar

Schommer J, Marwarha G, Nagamoto-Combs K, Ghribi O. Palmitic acid-enriched diet increases α-sSynuclein and tyrosine hydroxylase expression levels in the mouse brain. Front Neurosci 12, 552, 2018.10.3389/fnins.2018.00552608775230127714Search in Google Scholar

Segarra AB, Ramirez M, Banegas I, Alba F, Vives F, de Gasparo M, Ortega E, Ruiz E, Prieto I. Dietary fat influences testosterone, cholesterol, aminopeptidase A, and blood pressure in male rats. Horm Metab Res 40, 289–291, 2008.10.1055/s-2008-104680018548389Open DOISearch in Google Scholar

Segarra AB, Ruiz-Sanz JI, Ruiz-Larrea MB, Ramirez-Sanchez M, de Gasparo M, Banegas I, Martinez-Canamero M, Vives F, Prieto I. The profile of fatty acids in frontal cortex of rats depends on the type of fat used in the diet and correlates with neuropeptidase activities. Horm Metab Res 43, 86–91, 2011.10.1055/s-0030-126985521120792Search in Google Scholar

Thompson MW, Hersh LB. The puromycinsensitive aminopeptidase; in Hooper NM, Lendeckel U (eds): Aminopeptidases in Biology and Disease. Kluwer Academic/Plenum, New York, 2004, pp 1–15.10.1007/978-1-4419-8869-0_1Search in Google Scholar