Accès libre

Land use land cover mapping using advanced machine learning classifiers

   | 22 oct. 2021
À propos de cet article

Citez

Araki, S., Shima, M. & Yamamoto K. (2018). Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan. Sci. Total Environ., 634, 1269–1277. DOI: 10.1016/j. scitotenv.2018.03.324.10.1016/j.scitotenv.2018.03.324 Search in Google Scholar

Bégué, A., Arvor, D., Bellon, B., Betbeder, J., de Abelleyra, D., Ferraz, R.P.D., Lebourgeois, V., Lelong, C., Simőes, M. & Verón S.R. (2018). Remote sensing and cropping practices: A review. Remote Sensing, 10, 99. DOI: 10.3390/rs10010099.10.3390/rs10010099 Search in Google Scholar

Belward, A.S. & Skøien J.O. (2015). Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS Journal of Photogrammetry and Remote Sens ing, 103, 115–128. DOI: 10.1016/j.isprsjprs.2014.03.009.10.1016/j.isprsjprs.2014.03.009 Search in Google Scholar

Betts, M.G., Christopher Wolf, W.J., Ripple, B.P., Millers, K.A., Adam Duarte, S.H., Butchart, M. & Levi T. (2017). Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature, 547, 441‒447. DOI: 10.1038/nature23285.10.1038/nature2328528723892 Search in Google Scholar

Bourgeois, M. & Sahraoui Y. (2020). Modelling in the context of an environmental mobilisation: a graph-based approach for assessing the landscape ecological impacts of a highway project. Ekológia (Bratislava), 39(1), 88−100. DOI: 10.2478/eko-2020-007.10.2478/eko-2020-0007 Search in Google Scholar

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. DOI: 10.1023/a:1010933404324.10.1023/A:1010933404324 Search in Google Scholar

Chang, C., Lo, S. & Yu S. (2006). The parameter optimization in the inverse distance method by genetic algorithm for estimating precipitation. En viron. Monit. Assess., 117, 145–155. DOI: 10.1007/s10661-006-8498-0.10.1007/s10661-006-8498-016917704 Search in Google Scholar

Chen, Y., Chen, J., Hsieh, S. & Ni P. (2009). The application of remote sensing technology to the interpretation of land use for rainfall-induced landslides based on genetic algorithms and artificial neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sens ing, 2, 87–95.10.1109/JSTARS.2009.2023802 Search in Google Scholar

Cortes, C. & Vapnik V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. DOI: 10.1007/bf00994018.10.1007/BF00994018 Search in Google Scholar

Goodin, D.G., Anibas, K.L. & Bezymennyi M. (2015). Mapping land cover and land use from object-based classification: An example from a complex agricultural landscape. Int. J. Remote Sens., 36(18), 4702–4723. DOI: 10.1080/01431161.2015.1088674.10.1080/01431161.2015.1088674 Search in Google Scholar

Harris, R. & Baumann I. (2015). Open data policies and satellite earth observation. Space Policy, 32, 44−53. DOI: 10.1016/j.spacepol.2015.01.001.10.1016/j.spacepol.2015.01.001 Search in Google Scholar

Hasegawa, H., Arimura, M. & Tamura T. (2006). Hybrid model of random forests and genetic algorithms for commute mode choice. Analysis, 9. Search in Google Scholar

Hastie, T., Tibshirani, R. & Friedman J. (2009). Random forests. In The elements of statistical learning: Data mining, inference, and prediction (pp. 587–604). New York: Springer. DOI: 10.1007/978-0-387-84858-7_15.10.1007/978-0-387-84858-7_15 Search in Google Scholar

Jamali, A. (2019). Evaluation and comparison of eight machine learning models in land use/land cover mapping using Landsat 8 OLI: a case study of the northern region of Iran. SN Applied Sciences, 1, 1448. DOI: 10.1007/s42452-019-1527-8.10.1007/s42452-019-1527-8 Search in Google Scholar

Jamali, A. (2020a). Improving land use land cover mapping of a neural network with three optimizers of multi-verse optimizer, genetic algorithm, and derivative-free function. The Egyptian Journal of Remote Sensing and Space Science. DOI: 10.1016/j.ejrs.2020.07.001.10.1016/j.ejrs.2020.07.001 Search in Google Scholar

Jamali, A. (2020b). Land use land cover mapping using advanced machine learning classifiers: A case study of Shiraz city, Iran. Earth Science Infor matics. DOI: 10.1007/s12145-020-00475-4.10.1007/s12145-020-00475-4 Search in Google Scholar

Jamali, A. (2020c). Land use land cover modeling using optimized machine learning classifiers: a case study of Shiraz, Iran. Model. Earth Syst. Envi ron. DOI: 10.1007/s40808-020-00859-x.10.1007/s40808-020-00859-x Search in Google Scholar

Jamali, A., Mahdianpari, M., Brisco, B., Granger, J., Mohammadimanesh, F. & Salehi B. (2021a). Comparing Solo Versus Ensemble Convolutional Neural Networks for Wetland Classification Using Multi-Spectral Satellite Imagery. Remote Sensing, 13(11), 2046. DOI: 10.3390/rs13112046.10.3390/rs13112046 Search in Google Scholar

Jamali, A., Mahdianpari, M., Brisco, B., Granger, J., Mohammadimanesh, F. & Salehi B. (2021b). Wetland Mapping Using Multi-Spectral Satellite Imagery and Deep Convolutional Neural Networks: A Case Study in Newfoundland and Labrador, Canada. Canadian Journal of Remote Sensing, 1–18. DOI: 10.1080/07038992.2021.1901562.10.1080/07038992.2021.1901562 Search in Google Scholar

Kavzoglu, T. (2017). Object-oriented random forest for high resolution land cover mapping using quickbird-2 imagery. In S.S.P. Samui, S. Sekhar & V.E. Balas (Eds.), Handbook of neural computation (pp. 607–619). Cambridge: Academic Press. DOI: 10.1016/b978-0-12-811318-9.00033-8.10.1016/B978-0-12-811318-9.00033-8 Search in Google Scholar

Kenderessy P., Kollár, J. & Palaj A. (2020). The impact of historical agricultural landuse on selected site conditions in the traditional landscape of the West Carpathians. Ekológia (Bratislava), 39(4), 343−356. DOI: 10.2478/ eko-2020-0028.10.2478/eko-2020-0028 Search in Google Scholar

Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical Software, 1(5). https://www.jstatsoft.org/v028/i0510.18637/jss.v028.i05 Search in Google Scholar

Kussul, N., Lavreniuk, M., Skakun, S. & Shelestov A. (2017). Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778–782. DOI: 10.1109/ LGRS.2017.2681128.10.1109/LGRS.2017.2681128 Search in Google Scholar

Li, W., Haohuan, F., Le Yu, P., Gong, D.F., Congcong, L. & Clinton N. (2016). Stacked autoencoder-based deep learning for remote-sensing image classification: A case study of African land-cover mapping. Int. J. Remote Sens., 37(23), 5632–5646. DOI: 10.1080/01431161.2016.1246775.10.1080/01431161.2016.1246775 Search in Google Scholar

Li, W., Haohuan, F., Le, Y. & Cracknell A. (2017). Deep learning based oil palm tree detection and counting for high-resolution remote sensing images. Remote Sensing, 9(1), 22. DOI: 10.3390/rs9010022.10.3390/rs9010022 Search in Google Scholar

Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S. & Gill E. (2019). The first wetland inventory map of newfoundland at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the Google Earth Engine Cloud Computing Platform. Remote Sensing, 11(1), 43. DOI: 10.3390/rs11010043.10.3390/rs11010043 Search in Google Scholar

Mahdianpari, M., Salehi, B., Mohammadimanesh, F. & Motagh M. (2017). Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery. ISPRS Journal of Pho togrammetry and Remote Sensing, 130, 13−31. DOI: 10.1016/j.isprsjprs.2017.05.010.10.1016/j.isprsjprs.2017.05.010 Search in Google Scholar

Mansaray, L.R., Wang, F., Huang, J., Yang, L. & Kanu A.S. (2020). Accuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets. Geocarto International, 35(10), 1088–1108. DOI: 10.1080/10106049.2019.1568586.10.1080/10106049.2019.1568586 Search in Google Scholar

Mas, J.F. & Flores J.J. (2008). The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens., 29(3), 617–663. DOI: 10.1080/01431160701352154.10.1080/01431160701352154 Search in Google Scholar

Mohanty, S.P., Hughes, D.P. & Salathé M. (2016). Using deep learning for image-based plant disease detection. Frontiers in Plant Science, 7, 1419. DOI: 10.3389/ fpls.2016.01419.10.3389/fpls.2016.01419 Search in Google Scholar

Mountrakis, G., Jungho, I. & Ogole C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259. DOI: 10.1016/j.isprsjprs.2010.11.001.10.1016/j.isprsjprs.2010.11.001 Search in Google Scholar

Nitze, I., Barrett, B. & Cawkwell F. (2017). Temporal optimisation of image acquisition for land cover classification with random forest and MODIS Time-series. International Journal of Applied Earth Observation and Geo information, 34, 136–146. DOI: 10.1016/ j.jag.2014.08.001.10.1016/j.jag.2014.08.001 Search in Google Scholar

Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M. & Rigol-Sanchez J.P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93−104. DOI: 10.1016/j.isprsjprs.2011.11.002-10.1016/j.isprsjprs.2011.11.002 Search in Google Scholar

Rogan, J., Franklin, J., Stow, D., Miller, J., Woodcock, C. & Roberts D. (2008). Mapping land-cover modifications over large areas: a comparison of machine learning algorithms. Remote Sens. Environ., 112(5), 2272–2283. DOI: 10.1016/j.rse.2007.10.004.10.1016/j.rse.2007.10.004 Search in Google Scholar

Rouse, J.W., Haas, R.H., Deering, D.W. & Schell J.A. (1973). Monitoring the vernal advancement and retrogradation (green wave effect) of natural veg ffect) of natural vegetation. Progress Report RSC. Search in Google Scholar

Shao, Y. & Lunetta R.S. (2012). Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 78–87. DOI: 10.1016/j.isprsjprs.2012.04.001.10.1016/j.isprsjprs.2012.04.001 Search in Google Scholar

Skalský, R., Koco, Š., Barančíková, G., Tarasovičová, Z., Halas, J., Koleda, P., Makovníková, J., Gutteková, M., Tobiášová, E., Gömöryová, E. & Takáč J. (2020). Land cover and land use change-driven dynamics of soil organic carbon in North-East Slovakian croplands and grasslands between 1970 and 2013. Ekológia (Bratislava), 39(2), 159−173. DOI: 10.2478/ eko-2020-0012.10.2478/eko-2020-0012 Search in Google Scholar

Vapnik, V. (1982). Estimation of dependences based on empirical data. New York: Springer Verlag. DOI: 10.1007/0-387-34239-7.10.1007/0-387-34239-7 Search in Google Scholar

Waldrop, M.M. (2016). The chips are down for Moore’s Law. Nature, 530(7589), 144‒147. DOI: 10.1038/530144a.10.1038/530144a26863965 Search in Google Scholar

Woznicki, S.A., Baynes, J., Panlasigui, S., Mehaffey, M. & Neale A. (2019). Development of a spatially complete floodplain map of the conterminous United States using random forest. Sci. Total Environ., 647, 942–953. DOI: 10.1016/j.scitotenv.2018.07.353.10.1016/j.scitotenv.2018.07.353836933630180369 Search in Google Scholar

Yeom, J., Han, Y. & Kim Y. (2013). Separability analysis and classification of rice fields using KOMPSAT-2 high resolution satellite imagery. Research Journal of Chemistry and Environment, 17, 136–144. Search in Google Scholar

Zha, Y., Gao, J. & Ni S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens., 24(3), 583–594. DOI: 10.1080/01431160304987.10.1080/01431160304987 Search in Google Scholar

eISSN:
1337-947X
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, Ecology, other, Chemistry, Environmental Chemistry, Geosciences, Geography