Accès libre

A Water Quality Model for the Czech Part of the River Elbe

,  et   
19 févr. 2025
À propos de cet article

Citez
Télécharger la couverture

Becker A, Kirchesch V, Baumert HZ, Fischer H, Schol A. Modelling the effects of thermal stratification on the oxygen budget of an impounded river. Riv Res Appl. 2010;26(572)-88. DOI: 10.1002/rra.1260. Search in Google Scholar

Diamantini E, Lutz SR, Mallucci S, Majone B, Merz R, Bellin A. Driver detection of water quality trends in three large European river basins. Sci Total Environ. 2018;612:49-62. DOI: 10.1016/j.scitotenv.2017.08.172. Search in Google Scholar

Glendell M, Granger S, Bol R, Brazier R. Quantifying the spatial variability of soil physical and chemical properties in relation to mitigation of diffuse water pollution. Geoderma. 2014;214-215:25-41. DOI: 10.1016/j.geoderma.2013.10.008. Search in Google Scholar

Orr HG, Simpson GL, des Clers S, Watts G, Hughes M, Hannaford J, et al. Detecting changing river temperatures in England and Wales. Hydrol Process. 2015;29:752-66. DOI: 10.1002/hyp.10181. Search in Google Scholar

Laszewski M, Fedorczyk M, Stępniewski K. The impact of land cover on selected water quality parameters in Polish lowland streams during the non-vegetative period. Water. 2022;14:3295. DOI: 10.3390/w14203295. Search in Google Scholar

Velázquez-Chávez L. Anthropogenic impact on the quality of water and agricultural soil in Guadiana Valley, Durango, Mexico. Ecol Chem Eng S. 2023;30(3):373-86. DOI: 10.2478/eces-2023-0039. Search in Google Scholar

Fekrache F, Boudeffa K. Surface water contamination by mining wastes: case of the Sidi Kambar region (Skikda, north-east Algeria). Ecol Chem Eng S. 2023;30(1):49-61. DOI: 10.2478/eces-2023-0003. Search in Google Scholar

Novický O, Kašpárek L, Peláková M. Climate change impacts and responses in the Czech Republic and Europe. IAHS-AISH publication. 2016;308:418-23. Available from: https://iahs.info/uploads/dms/13697.77-418-423-82-308-Novicky.pdf. Search in Google Scholar

Langhammer J. Water quality changes in the Elbe River basin, Czech Republic, in the context of the post-socialist economic transition. GeoJournal. 2010;75(2):185-98. DOI: 10.1007/s10708-009-9292-7. Search in Google Scholar

Hübner G, Schwandt D. Extreme low flow and water quality - a long-term view on the river. Erdkunde. 2018;72(3):235-52. DOI: 10.3112/erdkunde.2018.03.05. Search in Google Scholar

Havlíková P, Mrkva L, Chuman T, Janský B. Surface water quality in the rural catchment of the Šlapanka River, Czechia: change over time. Environ Earth Sci. 2023;82:379. DOI: 10.1007/s12665-023-11067-y. Search in Google Scholar

Langhammer J, Kliment Z. Water quality changes in selected rural catchments in the Czech Republic. Ekologia Bratislava. 2009;28(3):312-32. DOI: 10.4149/ekol_2009_03_312. Search in Google Scholar

Mrkva L, Janský B. Surface water quality in the Mastnik stream catchment area: The situation in the Czech countryside. Geografie. 2018;123(4):479-505. DOI: 10.37040/geografie2018123040479. Search in Google Scholar

Mrkva L, Janský B, Šobr M. Eutrophication of the Mastník bay of the Slapy Reservoir, Czechia. AUC Geographica. 2021;56(1):65-78. DOI: 10.14712/23361980.2021.2. Search in Google Scholar

Fonseca A, Botelho C, Boaventura R, Vilar V. Integrated hydrological and water quality model for river management: A case study on Lena River. Sci Total Environ. 2014;485-486:474-89. DOI: 10.1016/j.scitotenv.2014.03.111. Search in Google Scholar

Qinggai W, Shibei L, Peng J, Changjun Q, Feng D. A review of surface water quality models. Sci World J. 2013;2013:231768. DOI: 10.1155/2013/231768. Search in Google Scholar

Haag I. A basic water quality model for the River Neckar: Part 2 - Model-based analysis of the oxygen budget and scenarios. Acta Hydrochim Hydrobiol. 2006;34:549-59. DOI: 10.1002/aheh.200400653. Search in Google Scholar

Ejigu M. Overview of water quality modeling. Cogent Eng. 2021;8:1. DOI: 10.1080/23311916.2021.1891711. Search in Google Scholar

Abdeveis S, Sedghi H, Hassonizadeh H, Babazadeh H. Application of water quality index and water quality model QUAL2K for evaluation of pollutants in Dez River, Iran. Water Resour. 2020;47:892-903. DOI: 10.1134/S0097807820050188. Search in Google Scholar

Ajiwibowo H, Ash-Shiddiq RHB, Pratama MB. Water quality and sedimentation modelling in Singkarak Lake, Western Sumatra. Geomate J. 2009;16(54):94-102. DOI: 10.21660/2019.54.8145. Search in Google Scholar

Akomeah E, Davies JM, Lindenschmidt KE. Water quality modeling of phytoplankton and nutrient cycles of a complex cold-region river-lake system. Environ Model Assess. 2019;25:293-306. DOI: 10.1007/s10666-019-09681-x. Search in Google Scholar

Bottelli DN, Santisi S, Martjena SH. A system of hydrodynamic, water quality and neural network models for predicting water quality in the Rio de la Plata estuary. Deltas of the future and what happens upstream. 36th IAHR World Congress; 2015. Available from: https://www.iahr.org/library/info?pid=7832. Search in Google Scholar

Lung WS, Larson E. Water quality modeling of upper Mississippi River and Lake Pepin. J Environ Eng. 1995;121(10). DOI: 10.1061/(ASCE)0733-9372(1995)121:10(691). Search in Google Scholar

BfG. QSim - the water quality model of the Federal Institute of Hydrology (BfG). Koblenz; 2018. DOI: 10.5675/BfG_QSim. Search in Google Scholar

Hardenbicker P, Rolinski S, Weitere M, Fischer H. Contrasting long-term trends and shifts in phytoplankton dynamics in two large rivers. Int Rev Hydrobiol. 2014;99(4):287-99. DOI: 10.1002/iroh.201301680. Search in Google Scholar

Hardenbicker P, Weitere M, Ritz S, Schöll F, Fischer H. Longitudinal plankton dynamics in the rivers Rhine and Elbe. Riv Res Appl. 2016;32(6):1264-78. DOI: 10.1002/rra.2977. Search in Google Scholar

Hein B, Viergutz C, Wyrwa J, Kirchesch V, Schöl A. Impacts of climate change on the water quality of the Elbe Estuary (Germany). J Appl Water Eng Res. 2018;6(1):28-39. DOI: 10.5194/egusphere-2022-1028. Search in Google Scholar

Quiel K, Becker A, Kirchesch V, Schöl A, Fischer H. Influence of global change on phytoplankton and nutrient cycling in the Elbe River. Reg Environ Change. 2012;11:405-21. DOI: 10.1007/s10113-010-0152-2. Search in Google Scholar

Billen G, Garnier J, Ficht A, Cun C. Modelling the response of water quality in the Seine River Estuary to human activity in its watershed over the last 50 years. Estuaries. 2001;24(6B):977-93. DOI: 10.2307/1353011. Search in Google Scholar

Ducharne A, Baubion C, Beaudoin N, Benoit M, Billen G, Brisson N, et al. Long-term prospective of the Seine River system: Confronting climatic and direct anthropogenic changes. Sci Total Environ. 2007;375:292-311. DOI: 10.1016/j.scitotenv.2006.12.011. Search in Google Scholar

Schöl A, Hein B, Wyrwa J, Kirchesch V. Modelling water quality in the Elbe and its estuary - Large scale and long-term applications with focus on the oxygen budget of the estuary. Die Küste. 2014;81. Available from: https://izw.baw.de/die-kueste/0/k081115.pdf. Search in Google Scholar

Schöl A, Kirchesch V, Bergfeld T, Schöll F, Borcherding J, Müller D. Modelling the chlorophyll a content of the river Rhine - Interrelation between riverine algal production and population biomass of grazers, rotifers and the zebra mussel Dreissena polymorpha. Int Rev Hydrobiol. 2002;87(2-3):295-317. DOI: 10.1002/1522-2632(200205)87:2/3<295::AID-IROH295>3.0.CO;2-B. Search in Google Scholar

Matzinger A, Fischer H, Schmid M. Modellierung von biogeochemischen Prozessen in Fließgewässern. 2012. DOI: 10.1002/9783527678488.hbal2012001. Search in Google Scholar

Ruter A, Becker A, Bergfeld-Wiedemann T, Hein B, Viergutz C. Das Gewassergutemodell QSim: Handbuch zur Benutzeroberfläche GERRIS (The QSim Water Quality Model: User Manual for the GERRIS Interface). BfG - 1778; 2013. 99p. DOI: BfG/2015/BfG-1778.pdf. Search in Google Scholar

Moriasi DN, Wilson BN, Douglas-Mankin KR, Arnold JG, Gowda PH. Hydrologic and water quality models: Use, calibration, and validation. Trans ASABE. 2012;55(4):1241-7. DOI: 10.13031/2013.42265. Search in Google Scholar

Moriasi D, Gitau M, Pai N, Daggupati P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans ASABE. 2015;58:1763-85. DOI: 10.13031/trans.58.10715. Search in Google Scholar

Arhonditsis G, Brett M. Evaluation of the current state of mechanistic aquatic biogeochemical modelling. Mar Ecol Prog Ser. 2004;271:13. DOI: 10.3354/meps271013. Search in Google Scholar

Gupta H, Sorooshian S, Yapo P. Toward improved calibration of hydrologic models: Multiple and non-commensurable measures of information. Water Resour Res. 1998;34. DOI: 10.1029/97WR03495. Search in Google Scholar

Viergutz C, Weitere M. Ökologie von Corbicula fluminea und Corbicula fluminalis als Grundlage für die Gewässergütemodellierung. Literaturstudie und Datenauswertung. Bundesanstalt für Gewässerkunde; 2013. DOI: 10.5675/kliwas_10.2013_corbicula. Search in Google Scholar

Benjamin MM. Water Chemistry. 2nd ed. Waveland Press; 2015. ISBN: 9781478623083. Search in Google Scholar

Bergfeld-Wiedemann T, Scherwass A, Ackermann B, Fischer H, Arndt H, Schöl A. Longitudinal and seasonal dynamics of the planktonic microbial community along the length of the River Rhine. River Syst. 2011;19:337-49. DOI: 10.1127/1868-5749/2011/020-0037. Search in Google Scholar