À propos de cet article

Citez

[l] Gabrijel I, Jelčić Rukavina M, Štirmer N. Influence of wood fly ash on concrete properties through filling effect mechanism. Materials. 2021;14(23):7164. DOI: 10.3390/ma14237164.Search in Google Scholar

[2] Carević I, Serdar M, Štirmer N, Ukrainczyk N. Preliminary screening of wood biomass ashes for partial resources replacements in cementitious materials. J Cleaner Prod. 2019;229:1045-64. DOI: 10.1016/j.jclepro.2019.04.321.Search in Google Scholar

[3] Füzesi I, Heil B, Kovács G. Effects of wood ash on the chemical properties of soil and crop vitality in small plot experiments. Acta Silv Lign Hung. 2015;11(1):55-64. DOI: 10.1515/aslh-2015-0004.Search in Google Scholar

[4] Ali A, Hashmi HN, Baig N. Treatment of the paper mill effluent - A review. Annals Faculty Eng Hunedoara. 2013;11(3):337. Available from: https://annals.fih.upt.ro/pdf-full/2013/ANNALS-2013-3-56.pdf.Search in Google Scholar

[5] Cherian C, Siddiqua S. Pulp and paper mill fly ash: A review. Sustainability. 2019;11(16):4394. DOI: 10.3390/su11164394.Search in Google Scholar

[6] Lessard JM, Omran A, Tagnit-Hamou A, Gagne R. Feasibility of using biomass fly and bottom ashes in dry-cast concrete production. Construction Building Materials. 2017;132:565-77. DOI: 10.1016/j.conbuildmat.2016.12.009.Search in Google Scholar

[7] Agrawal VM, Savoikar PP. Sustainable use of normal and ultra-fine fly ash in mortar as partial replacement to ordinary Portland cement in ternary combinations. Materials Today: Proc. 2022;51:1593-7. DOI: 10.1016/j.matpr.2021.10.409.Search in Google Scholar

[8] Omur T, Miyan N, Kabay N, Birol B, Oktay D. Characterization of ferrochrome ash and blast furnace slag based alkali-activated paste and mortar. Construction Building Materials. 2023;363:129805. DOI: 10.1016/j.conbuildmat.2022.129805.Search in Google Scholar

[9] Martínez-García R, Jagadesh P, Zaid O, Șerbănoiu AA, Fraile-Fernández FJ, de Prado-Gil J, et al. The present state of the use of waste wood ash as an eco-efficient construction material: A review. Materials. 2022;15(15):5349. DOI: 10.3390/ma15155349.Search in Google Scholar

[10] Elangovan G, Rajanandhini MV. Experimental study and SEM analysis on mortar cube with wood ash for partial replacement of cement. Manage Res. 2018;5(3):263-9. DOI: 10.5281/zenodo.1218517.Search in Google Scholar

[11] Awolusi TF, Sojobi AO, Afolayan JO. SDA and laterite applications in concrete: Prospects and effects of elevated temperature. Cogent Eng. 2017;4(1):1387954. DOI: 10.1080/23311916.2017.1387954.Search in Google Scholar

[12] Wong LS, Chandran SN, Rajasekar RR, Kong SY. Pozzolanic characterization of waste newspaper ash as a supplementary cementing material of concrete cylinders. Case Stud Construction Materials. 2022; 17:e01342. DOI: 10.1016/j.cscm.2022.e01342.Search in Google Scholar

[13] Nasir M, Aziz MA, Zubair M, Ashraf N, Hussein TN, Allubli MK, et al. Engineered cellulose nanocrystals-based cement mortar from office paper waste: Flow, strength, microstructure, and thermal properties. J Building Eng. 2022;51:104345. DOI: 10.1016/j.jobe.2022.104345.Search in Google Scholar

[14] Ekinci A, Hanafi M, Aydin E. Strength, stiffness, and microstructure of wood-ash stabilized marine clay. Minerals. 2020;10(9):796. DOI: 10.3390/min10090796.Search in Google Scholar

[15] Seifi S, Sebaibi N, Levacher D, Boutouil M. Mechanical performance of a dry mortar without cement, based on paper fly ash and blast furnace slag. J Building Eng. 2019;22:113-21. DOI: 10.1016/j.jobe.2018.11.004.Search in Google Scholar

[16] Zmamou H, Leblanc N, Levacher D, Kubiak J. Recycling of high quantities of wastepaper sludge ash for production of blended cements and alternative materials. Environ Technol Innov. 2021;23:101524. DOI: 10.1016/j.eti.2021.101524.Search in Google Scholar

[17] CEN/TS 14429. Characterization of Waste-Leaching Behaviour Tests-Influence of pH on Leaching with Initial Acid/base Addition. 2005. Available from: https://ilnas.services-publics.lu/ecnor/downloadPreview.action?documentReference=15557.Search in Google Scholar

[18] Boruczkowski T, Boruczkowska H, Drożdż W, Miszczak M, Leszczyński W. Use of image software for assessment of mechanical damage to starch granules. Processes. 2022;10(4):630. DOI: 10.3390/pr10040630.Search in Google Scholar

[19] Jamshaid A, Hamid A, Muhammad N, Naseer A, Ghauri M, Iqbal J, et al. Cellulose‐based materials for the removal of heavy metals from wastewater - An overview. ChemBioEng Rev. 2017;4(4):240-56. DOI: 10.1002/cben.201700002.Search in Google Scholar

[20] Chirenje T, Ma LQ, Lu L. Retention of Cd, Cu, Pb and Zn by wood ash, lime and fume dust. Water Air Soil Pollut. 2006;171:301-14. DOI: 10.1007/s11270-005-9051-4.Search in Google Scholar

[21] Soleimanifar H, Deng Y, Wu L, Sarkar D. Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff. Chemosphere. 2016;154:289-92. DOI: 10.1016/j.chemosphere.2016.03.101.Search in Google Scholar

[22] Sidhu V, Barrett K, Park DY, Deng Y, Datta R, Sarkar D, et al. Wood mulch coated with iron-based water treatment residuals for the abatement of metals and phosphorus in simulated stormwater runoff. Environ Technol Innov. 2021;21:101214. DOI: 10.1016/j.eti.2020.101214.Search in Google Scholar

[23] Pham BN, Kang JK, Lee CG, Park SJ. Removal of heavy metals (Cd2+, Cu2+, Ni2+, Pb2+) from aqueous solution using Hizikia fusiformis as an algae-based bioadsorbent. Appl Sci. 2021;11(18):8604. DOI: 10.3390/app11188604.Search in Google Scholar

[24] Han B, Weatherley AJ, Mumford K, Bolan N, He JZ, Stevens GW, et al. Modification of naturally abundant resources for remediation of potentially toxic elements: A review. J Hazardous Materials. 2022;421:126755. DOI: 10.1016/j.jhazmat.2021.126755.Search in Google Scholar

[25] Ding Z, Xu X, Phan T, Hu X. Carbonized waste corrugated paper packaging boxes as low-cost adsorbent for removing aqueous Pb(II), Cd(II), Zn(II), and methylene blue. Polish J Environ Stud. 2018;27(6). DOI: 10.15244/pjoes/81204.Search in Google Scholar

[26] Farghali AA, Bahgat M, Allah AE, Khedr MH. Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures. Beni-Suef Univ J Basic Appl Sci. 2013;2(2):61-71. DOI: 10.1016/j.bjbas.2013.01.001.Search in Google Scholar

[27] Arshadi M, Amiri MJ, Mousavi S. Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash. Water Resources Industry. 2014;6:1-7. DOI: 10.1016/j.wri.2014.06.001.Search in Google Scholar

[28] Akpomie KG, Dawodu FA. Potential of a low-cost bentonite for heavy metal abstraction from binary component system. Beni-Suef Univ J Basic Appl Sci. 2015;4(1):1-3. DOI: 10.1016/j.bjbas.2015.02.002.Search in Google Scholar

[29] Kushwaha AK, Gupta N, Chattopadhyaya MC. Adsorption behavior of lead onto a new class of functionalized silica gel. Arabian J Chem. 2017;10:S81-9. DOI: 10.1016/j.arabjc.2012.06.010.Search in Google Scholar

[30] Xiuling L. Preparation of Graphene Oxide-Molecular Sieve Composite Adsorbent and its Adsorption Performance for Heavy Metals in Water. IOP Conference Series: Earth Environ Sci. 2021;784(1): 012022. IOP Publishing. DOI: 10.1088/1755-1315/784/1/012022.Search in Google Scholar

[31] Kinniburgh DG, Jackson ML, Syers JK. Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum. Soil Sci Soc America J. 1976;40(5):796-9. DOI: 10.2136/sssaj1976.03615995004000050047x.Search in Google Scholar

[32] Directive 1999/31/EC of the Council of the European Union Council decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Off J Eur Commun. 2003;L11/27:1-23. Available from: https://eur-uri=OJ:L:2003:011:0027:0049:EN:PDF.Search in Google Scholar

[33] Zohar I, Haruzi P. Image analysis for spectroscopic elemental dot maps: P, Al, and Ca associations in water treatment residuals as a case study. Front Environ Chem. 2021;2:719300. DOI: 10.3389/fenvc.2021.719300.Search in Google Scholar

[34] Singh V, Pant N, Sharma RK, Padalia D, Rawat PS, Goswami R, et al. Adsorption studies of Pb(II) and Cd(II) heavy metal ions from aqueous solutions using a magnetic biochar composite material. Separations. 2023;10(7):389. DOI: 10.3390/separations10070389.Search in Google Scholar

[35] Grubb DG, Moon DH, Reilly T, Chrysochoou M, Dermatas D. Stabilization/solidification (S/S) of Pb and W contaminated soils using type I/II Portland cement, silica fume cement and cement kiln dust. Glob Nest J. 2009;11:267-82. DOI: 10.30955/gnj.000624Search in Google Scholar

[36] Liu J, Wu D, Tan X, Yu P, Xu L. Review of the interactions between conventional cementitious materials and heavy metal ions in stabilization/solidification processing. Materials. 2023;16(9):3444. DOI: 10.3390/ma16093444.Search in Google Scholar

[37] Wang H, Zhu Z, Pu S, Song W. Solidification/stabilization of Pb2+ and Cd2+ contaminated soil using fly ash and GGBS based geopolymer. Arabian J Sci Eng. 2022;47(4):4385-400. DOI: 10.1007/s13369-021-06109-1.Search in Google Scholar

[38] Wang Y, Han F, Mu J. Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers. Construct Build Mater. 2018;160:818-27. DOI: 10.1016/j.conbuildmat.2017.12.006.Search in Google Scholar

[39] Liu J, Zha F, Xu L, Kang B, Yang C, Zhang W, et al. Zinc leachability in contaminated soil stabilized/solidified by cement-soda residue under freeze-thaw cycles. Appl Clay Sci. 2020;186:105474. DOI: 10.1016/j.clay.2020.105474.Search in Google Scholar

[40] Qiu Y, Cao S, Chen F, You S, Zhang Y. Synthesis of calcium silicate as paper filler with desirable particle size from desilication solution of silicon-containing waste residues. Powder Technol. 2020;368:137-48. DOI: 10.1016/j.powtec.2020.04.042.Search in Google Scholar

[41] Zając G, Szyszlak-Bargłowicz J, Gołębiowski W, Szczepanik M. Chemical characteristics of biomass ashes. Energies. 2018;11(11):2885. DOI: 10.3390/en11112885.Search in Google Scholar

[42] Baquerizo LG, Matschei T, Scrivener KL, Saeidpour M, Wadsö L. Hydration states of AFm cement phases. Cement Concrete Res. 2015;73:143-57. DOI: 10.1016/j.cemconres.2015.02.011.Search in Google Scholar

eISSN:
2084-4549
Langue:
Anglais