Accès libre

The Impact of Propanol, N-Butanol and Pentanol on Aqueous Dispersions of Sonicated Liposomes. EPR Study

À propos de cet article

Citez

[1] Antošová B, Hrabák P, Antoš V, Wacławek S. Chemical oxidation of polycyclic aromatic hydrocarbons in water by ferrates(VI). Chem Eng S. 2020;27:529-42. DOI: 10.2478/eces-2020-0032.10.2478/eces-2020-0032 Search in Google Scholar

[2] Marszałek A, Bohdziewicz J, Puszczało E. Co-treatment of municipal landfill leachate with dairy wastewater in membrane bioreactor. Ecol Chem Eng S. 2020;27:139-49. DOI: 10.2478/eces-2020-0009.10.2478/eces-2020-0009 Search in Google Scholar

[3] Kavet R, Nauss KM. The toxicity of inhaled methanol vapors. Crit Rev Toxicol. 1990;21:21-50. DOI: 10.3109/10408449009089872.10.3109/104084490090898722264926 Search in Google Scholar

[4] Ashurst JV, Nappe TM. Methanol Toxicity. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. PMID: 29489213. Search in Google Scholar

[5] McQueen ChA. Comprehensive Toxicology. Renal Toxicology. Pergamon; 1997;7. ISBN: 0080429726 Search in Google Scholar

[6] Dalena F, Senatore A, Marino A, Gordano A, Basile M, Basile A. Methanol production and applications: An overview. Methanol Prod Appl Overv. Elsevier; 2018, p. 3-28. DOI: 10.1016/B978-0-444-63903-5.00001-7.10.1016/B978-0-444-63903-5.00001-7 Search in Google Scholar

[7] Moreno L, Bello R, Primo-Yúfera E, Esplugues J. Pharmacological properties of the methanol extract from Mentha suaveolens Ehrh. Phytother Res. 2002;16:10-3. DOI: 10.1002/ptr.744.10.1002/ptr.74411933132 Search in Google Scholar

[8] Lachenmeier DW. Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity. J Occup Med Toxicol. 2008;3:26. DOI: 10.1186/1745-6673-3-26.10.1186/1745-6673-3-26259615819014531 Search in Google Scholar

[9] Rusyn I, Bataller R. Alcohol and toxicity. J Hepatol. 2013;59:387-8. DOI: 10.1016/j.jhep.2013.01.035.10.1016/j.jhep.2013.01.035395990323391479 Search in Google Scholar

[10] Green AR, Grahame-Smith DG. Propranolol inhibits the behavioural responses of rats to increased 5-hydroxytryptamine in the central nervous system. Nature 1976:594-6. DOI: 10.1038/262594a0.10.1038/262594a08727 Search in Google Scholar

[11] Slaughter RJ, Mason RW, Beasley DMG, Vale JA, Schep LJ. Isopropanol poisoning. Clin Toxicol. 2014;52:470-8. DOI: 10.3109/15563650.2014.914527.10.3109/15563650.2014.91452724815348 Search in Google Scholar

[12] Segal D, Bale AS, Phillips LJ, Sasso A, Schlosser PM, Starkey C, et al. Issues in assessing the health risks of n-butanol. J Appl Toxicol. 2020;40:72-86. DOI: 10.1002/jat.3820.10.1002/jat.3820952856931231852 Search in Google Scholar

[13] Patočka J, Kuča K. Toxic alcohols: aliphatic saturated alcohols. Mil Med Sci Lett. 2012;81:142-63. DOI: 10.31482/mmsl.2012.022.10.31482/mmsl.2012.022 Search in Google Scholar

[14] Jin C, Yao M, Liu H, Lee CF, Ji J. Progress in the production and application of n-butanol as a biofuel. Renew Sustain Energy Rev. 2011;15:4080-106. DOI: 10.1016/j.rser.2011.06.001.10.1016/j.rser.2011.06.001 Search in Google Scholar

[15] Venkataramanan KP, Kurniawan Y, Boatman JJ, Haynes CH, Taconi KA, Martin L, et al. Homeoviscous response of Clostridium pasteurianum to butanol toxicity during glycerol fermentation. J Biotechnol. 2014;179:8-14. DOI: 10.1016/j.jbiotec.2014.03.017.10.1016/j.jbiotec.2014.03.01724637368 Search in Google Scholar

[16] Pan M, Huang R, Liao J, Jia C, Zhou X, Huang H, et al. Experimental study of the spray, combustion, and emission performance of a diesel engine with high n-pentanol blending ratios. Energy Convers Manage. 2019;194:1-10. DOI: 10.1016/j.enconman.2019.04.054.10.1016/j.enconman.2019.04.054 Search in Google Scholar

[17] Lachenmeier DW, Rehm J, Gmel G. Surrogate alcohol: what do we know and where do we go? Alcohol Clin Exp Res. 2007;31:1613-24. DOI: 10.1111/j.1530-0277.2007.00474.x.10.1111/j.1530-0277.2007.00474.x17681034 Search in Google Scholar

[18] Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes: Cell membranes are viewed as two-dimensional solutions of oriented globular proteins and lipids. Science 1972;175:720-31. DOI: 10.1126/science.175.4023.720.10.1126/science.175.4023.7204333397 Search in Google Scholar

[19] McConnell HM. Molecular Motion in Biological Membranes. Spin Labeling: Theory and Applications. New York: Academic Press; 1976, p. 525-60. ISBN: 0120923505.10.1016/B978-0-12-092350-2.50018-7 Search in Google Scholar

[20] Sackmann E. Dynamic molecular organization in vesicles and membranes. Berichte Bunsenges Phys Chem. 1978;82:891-909. DOI: 10.1002/bbpc.19780820925.10.1002/bbpc.19780820925 Search in Google Scholar

[21] Man D, Słota R, Broda MA, Mele G, Li J. Metalloporphyrin intercalation in liposome membranes: ESR study. JBIC J Biol Inorg Chem. 2011;16:173-81. DOI: 10.1007/s00775-010-0715-1.10.1007/s00775-010-0715-1301935420963616 Search in Google Scholar

[22] Matos C, Moutinho C, Lobão P. Liposomes as a model for the biological membrane: Studies on daunorubicin bilayer interaction. J Membr Biol. 2012;245:69. DOI: 10.1007/s00232-011-9414-2.10.1007/s00232-011-9414-222210277 Search in Google Scholar

[23] Sessa G, Weissmann G. Phospholipid spherules (liposomes) as a model for biological membranes. J Lipid Res. 1968:310. DOI: 10.1016/S0022-2275(20)43097-4.10.1016/S0022-2275(20)43097-4 Search in Google Scholar

[24] Park J-S, Jung T-S, Noh Y-H, Kim W-S, Park W-I, Kim Y-S, et al. The effect of lidocaine · HCl on the fluidity of native and model membrane lipid bilayers. Korean J Physiol Pharmacol. 2012;16:413-22. DOI: 10.4196/kjpp.2012.16.6.413.10.4196/kjpp.2012.16.6.413352674623269904 Search in Google Scholar

[25] Hossain M, Blanchard GJ. Effects of ethanol and n-butanol on the fluidity of supported lipid bilayers. Chem Phys Lipids. 2021;238:105091. DOI: 10.1016/j.chemphyslip.2021.105091.10.1016/j.chemphyslip.2021.105091822216533992653 Search in Google Scholar

[26] Xiaomei M, Zhensheng Z. Preparation and properties of poly(vinyl alcohol)-stabilized liposomes. Int J Pharm. 2006;218:55-61. DOI: 10.1016/j.ijpharm.2006.03.016.10.1016/j.ijpharm.2006.03.01616624507 Search in Google Scholar

[27] Domazou AS, Luisi PL. Size distribution of spontaneously formed liposomes by the alcohol injection method. J Liposome Res. 2002;12:205-20. DOI: 10.1081/lpr-120014758.10.1081/LPR-120014758 Search in Google Scholar

[28] Yang Y-M, Wu K-C, Huang Zheng-L, Chang C-H. On the stability of liposomes and catansomes in aqueous alcohol solutions. Langmuir. 2008;24:1695-700. DOI: 10.1021/la701882d.10.1021/la701882d18225922 Search in Google Scholar

[29] Cui J, Li C, Deng Y, Wang Y, Wang W. Freeze-drying of liposomes using tertiary butyl alcohol/water cosolvent systems. Int J Pharm. 2006;312:131-6. DOI: 10.1016/j.ijpharm.2006.01.004.10.1016/j.ijpharm.2006.01.00416459032 Search in Google Scholar

[30] Andrade J, González-Martínez C, Chiralt A. The incorporation of carvacrol into poly (vinyl alcohol) films encapsulated in lecithin liposomes. Polymers. 2020;12:497. DOI: 10.3390/polym12020497.10.3390/polym12020497707772232102448 Search in Google Scholar

[31] Wang X, Yang L, Chen Z, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58:97-110. DOI: 10.3322/CA.2007.0003.10.3322/CA.2007.000318227410 Search in Google Scholar

[32] Vasir J, Labhasetwar V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev. 2007;59:718-28. DOI: 10.1016/j.addr.2007.06.003.10.1016/j.addr.2007.06.003200252017683826 Search in Google Scholar

[33] Gabizon A, Goren D, Cohen R, Barenholz Y. Development of liposomal anthracyclines: from basics to clinical. J Controlled Release. 1998;53:275-9. DOI: 10.1016/S0168-3659(97)00261-7.10.1016/S0168-3659(97)00261-79741935 Search in Google Scholar

[34] Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today. 2003;8:1112-20. DOI: 10.1016/S1359-6446(03)02903-9.10.1016/S1359-6446(03)02903-914678737 Search in Google Scholar

[35] Torchilin V. Antibody-modified liposomes for cancer chemotherapy. Expert Opin Drug Deliv. 2008;5:1003-25. DOI: 10.1517/17425247.5.9.1003.10.1517/17425247.5.9.100318754750 Search in Google Scholar

[36] Budai M, Szógyi M. Liposomes as drug carrier systems. Preparation, classification and therapeutic advantages of liposomes. Acta Pharm Hung. 2001;71:114-8. PMID: 11769091. Search in Google Scholar

[37] Pjanović R, Bošković-Vragolović N, Velijković-Giga J, Garić-Grulowić R, Pejanović S, Bugarski B. Diffusion of drugs from hydrogels and liposomes as drug carriers. J Chem Technol Biotechnol. 2010;85:693-8. DOI: 10.1002/jctb.2357.10.1002/jctb.2357 Search in Google Scholar

[38] Dichello GA, Fukuda T, Maekawa T, Whitby RLD, Mikhalovsky SV, Alavijeh M, et al. Preparation of liposomes containing small gold nanoparticles using electrostatic interactions. Eur J Pharm Sci. 2017:55-63. DOI: 10.1016/j.ejps.2017.05.001.10.1016/j.ejps.2017.05.00128476616 Search in Google Scholar

[39] Kanwa N, De SK, Adhikari C, Chakraborty A. Spectroscopic study of the interaction of carboxyl-modified gold nanoparticles with liposomes of different chain lengths and controlled drug release by layer-by-layer technology. J Phys Chem B. 2017;121:11333-43. DOI: 10.1021/acs.jpcb.7b08455.10.1021/acs.jpcb.7b0845529148780 Search in Google Scholar

[40] Man D, Pisarek I, Braczkowski M, Pytel B, Olchawa R. The impact of humic and fulvic acids on the dynamic properties of liposome membranes: the ESR method. J Liposome Res. 2014;24:106-12. DOI: 10.3109/08982104.2013.839998.10.3109/08982104.2013.83999824144352 Search in Google Scholar

[41] Coderch L, Fonollosa MDP, Pera MD, Estelrich J, Maza ADL, Parra JL. Influence of cholesterol on liposome fluidity by EPR. Relationship with percutaneous absorption. J Controlled Release. 2000;68:85-95. DOI: 10.1016/s0168-3659(00)00240-6.10.1016/S0168-3659(00)00240-6 Search in Google Scholar

[42] Subongkot T, Ngawhirunpat T. Effect of liposomal fluidity on skin permeation of sodium fluorescein entrapped in liposomes. Int J Nanomedicine. 2015;10:4581-92. DOI: 10.2147/IJN.S86624.10.2147/IJN.S86624451435226229462 Search in Google Scholar

[43] Dyrda G, Boniewska-Bernacka E, Man D, Barchiewicz K, Słota R. The effect of organic solvents on selected microorganisms and model liposome membrane. Mol Biol Rep. 2019;46:3225-32. DOI: 10.1007/s11033-019-04782-y.10.1007/s11033-019-04782-y30937654 Search in Google Scholar

[44] Man D, Słota R, Kawecka A, Engel G, Dyrda G. Liposomes modified by mono- and bis-phthalocyanines: A comprehensive EPR study. Eur Phys J E. 2017;40:63. DOI: 10.1140/epje/i2017-11550-4.10.1140/epje/i2017-11550-428620695 Search in Google Scholar

[45] Wałęsa R, Man D, Engel G, Siodłak D, Kupka T, Ptak T, et al. The impact of model peptides on structural and dynamic properties of egg yolk lecithin liposomes - experimental and DFT studies. Chem Biodivers. 2015;12:1007-24. DOI: 10.1002/cbdv.201400179.10.1002/cbdv.20140017926172322 Search in Google Scholar

[46] Man D, Olchawa R. Dynamics of surface of lipid membranes: theoretical considerations and the ESR experiment. Eur Biophys J. 2017;46:325-34. DOI: 10.1007/s00249-016-1172-8.10.1007/s00249-016-1172-8538496827640144 Search in Google Scholar

[47] Sowa GZ, Qin PZ. Site-directed spin labeling studies on nucleic acid structure and dynamics. Progr Nucleic Acid Res. Mol Biol. 2008;82:147-97. DOI: 10.1016/S0079-6603(08)00005-6.10.1016/S0079-6603(08)00005-6276662118929141 Search in Google Scholar

[48] Griffith OH, Jost P. Lipid spin labels in biological membranes. Spin Labeling: Theory and Applications. New York: Academic Press; 1976;1:453-523. ISBN: 0120923505. DOI: 10.1016/B978-0-12-092350-2.50017-510.1016/B978-0-12-092350-2.50017-5 Search in Google Scholar

[49] Schreier S, Polnaszek CF, Smith ICP. Spin labels in membranes problems in practice. Biochim Biophys Acta. BBA - Rev Biomembr. 1978;515:395-436. DOI: 10.1016/0304-4157(78)90011-4.10.1016/0304-4157(78)90011-4215206 Search in Google Scholar

[50] Shimshick EJ, McConnell HM. Lateral phase separation in phospholipid membranes. Biochemistry. 1973;12:2351-60. DOI: 10.1021/bi00736a026.10.1021/bi00736a0264351059 Search in Google Scholar

[51] Mitrus S, Man D. Effect of tin and lead chlorotriphenyl analogues on fruit fly Drosophila hydei and liposomes membrane. J Biochem Mol Toxicol. 2012;26:162-7. DOI: 10.1002/jbt.21403.10.1002/jbt.2140322447721 Search in Google Scholar

[52] Hemminga MA. Interpretation of ESR and saturation transfer ESR spectra of spin labeled lipids and membranes. Chem Phys Lipids. 1983:323-83. DOI: 10.1016/0009-3084(83)90040-3.10.1016/0009-3084(83)90040-3 Search in Google Scholar

[53] Pytel B, Filipiak A, Pisarek I, Olchawa R, Man D. Impact of humic acids on EYL liposome membranes: ESR method. Nukleonika. 2015;60:455-9. DOI: 10.1515/nuka-2015-0081.10.1515/nuka-2015-0081 Search in Google Scholar

[54] Wang G, Garvey C, Zhao H, Huang K, Kong L. Toward the fabrication of advanced nanofiltration membranes by controlling morphologies and mesochannel orientations of hexagonal lyotropic liquid crystals. Membranes. 2017;7:37. DOI: 10.3390/membranes7030037.10.3390/membranes7030037561812228753973 Search in Google Scholar

eISSN:
2084-4549
Langue:
Anglais